| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "Operations" |
| |
| #include "OperationResolver.h" |
| #include "OperationsUtils.h" |
| |
| namespace android { |
| namespace nn { |
| namespace fill_op { |
| |
| constexpr uint32_t kNumInputs = 2; |
| constexpr uint32_t kDimsTensor = 0; |
| constexpr uint32_t kValueScalar = 1; |
| |
| constexpr uint32_t kNumOutputs = 1; |
| constexpr uint32_t kOutputTensor = 0; |
| |
| namespace { |
| |
| template <typename T> |
| bool executeTyped(IOperationExecutionContext* context) { |
| T* output = context->getOutputBuffer<T>(kOutputTensor); |
| const int numElements = getNumberOfElements(context->getOutputShape(kOutputTensor)); |
| const T value = context->getInputValue<T>(kValueScalar); |
| for (int i = 0; i < numElements; ++i) { |
| output[i] = value; |
| } |
| return true; |
| } |
| |
| bool getValueType(OperandType outputType, OperandType* valueType) { |
| switch (outputType) { |
| case OperandType::TENSOR_FLOAT16: |
| *valueType = OperandType::FLOAT16; |
| return true; |
| case OperandType::TENSOR_FLOAT32: |
| *valueType = OperandType::FLOAT32; |
| return true; |
| case OperandType::TENSOR_INT32: |
| *valueType = OperandType::INT32; |
| return true; |
| default: |
| NN_RET_CHECK_FAIL() << "Unsupported value type for fill op: " << outputType; |
| } |
| } |
| |
| } // namespace |
| |
| Result<Version> validate(const IOperationValidationContext* context) { |
| NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs); |
| NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs); |
| // Check output type first because input value type is dependent on the |
| // output type. |
| OperandType outputType = context->getOutputType(kOutputTensor); |
| NN_RET_CHECK(outputType == OperandType::TENSOR_FLOAT16 || |
| outputType == OperandType::TENSOR_FLOAT32 || |
| outputType == OperandType::TENSOR_INT32) |
| << "Unsupported output type for fill op: " << outputType; |
| NN_RET_CHECK(validateOutputTypes(context, {outputType})); |
| |
| OperandType valueType; |
| NN_RET_CHECK(getValueType(outputType, &valueType)); |
| NN_RET_CHECK(validateInputTypes(context, {OperandType::TENSOR_INT32, valueType})); |
| |
| return Version::ANDROID_R; |
| } |
| |
| bool prepare(IOperationExecutionContext* context) { |
| Shape dimsShape = context->getInputShape(kDimsTensor); |
| NN_RET_CHECK_EQ(getNumberOfDimensions(dimsShape), 1u); |
| |
| Shape outputShape = context->getOutputShape(kOutputTensor); |
| outputShape.dimensions.resize(dimsShape.dimensions[0]); |
| const int32_t* dims = context->getInputBuffer<int32_t>(kDimsTensor); |
| for (uint32_t i = 0; i < dimsShape.dimensions[0]; ++i) { |
| outputShape.dimensions[i] = dims[i]; |
| } |
| return context->setOutputShape(kOutputTensor, outputShape); |
| } |
| |
| bool execute(IOperationExecutionContext* context) { |
| switch (context->getInputType(kValueScalar)) { |
| case OperandType::FLOAT16: |
| return executeTyped<_Float16>(context); |
| case OperandType::FLOAT32: |
| return executeTyped<float>(context); |
| case OperandType::INT32: |
| return executeTyped<int32_t>(context); |
| default: |
| NN_RET_CHECK_FAIL() << "Unsupported value type for fill op."; |
| } |
| } |
| |
| } // namespace fill_op |
| |
| NN_REGISTER_OPERATION(FILL, "FILL", fill_op::validate, fill_op::prepare, fill_op::execute); |
| |
| } // namespace nn |
| } // namespace android |