blob: 3deefc2c813e887ec690472b79ac732e2b7b05f7 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FRAMEWORKS_ML_NN_LSH_PROJECTION_H
#define FRAMEWORKS_ML_NN_LSH_PROJECTION_H
#include "Operations.h"
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_0 {
struct Operation;
}
} // namespace neuralnetworks
} // namespace hardware
} // namespace android
namespace android {
namespace nn {
enum LSHProjectionType {
LSHProjectionType_UNKNOWN = 0,
LSHProjectionType_SPARSE = 1,
LSHProjectionType_DENSE = 2,
};
struct RunTimeOperandInfo;
struct Shape;
class LSHProjection {
public:
LSHProjection(
const android::hardware::neuralnetworks::V1_0::Operation &operation,
std::vector<RunTimeOperandInfo> &operands);
static bool Prepare(
const android::hardware::neuralnetworks::V1_0::Operation &operation,
std::vector<RunTimeOperandInfo>& operands,
Shape *outputShape);
bool Eval();
static constexpr int kHashTensor = 0;
static constexpr int kInputTensor = 1;
static constexpr int kWeightTensor = 2; // Optional
static constexpr int kTypeParam = 3;
static constexpr int kOutputTensor = 0;
private:
LSHProjectionType type_;
const RunTimeOperandInfo *hash_;
const RunTimeOperandInfo *input_;
const RunTimeOperandInfo *weight_;
RunTimeOperandInfo *output_;
};
} // namespace nn
} // namespace android
#endif // FRAMEWORKS_ML_NN_LSH_PROJECTION_H