| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "OperationsUtils" |
| |
| #include "OperationsUtils.h" |
| #include "Operations.h" |
| #include "Utils.h" |
| |
| #include <cmath> |
| |
| namespace android { |
| namespace nn { |
| |
| bool SameShape(const Shape& in1, const Shape& in2) { |
| if (in1.type != in2.type || in1.dimensions.size() != in2.dimensions.size()) { |
| return false; |
| } |
| for (size_t i = 0; i < in1.dimensions.size(); i++) { |
| if (in1.dimensions[i] != in2.dimensions[i]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool SetShape(const Shape& in, Shape* out) { |
| if (in.type != out->type || in.dimensions.size() != out->dimensions.size()) { |
| return false; |
| } |
| out->dimensions = in.dimensions; |
| return true; |
| } |
| |
| uint32_t getNumberOfElements(const Shape& shape) { |
| uint32_t count = 1; |
| for (size_t i = 0; i < shape.dimensions.size(); i++) { |
| count *= shape.dimensions[i]; |
| } |
| return count; |
| } |
| |
| uint32_t getNumberOfDimensions(const Shape& shape) { |
| return shape.dimensions.size(); |
| } |
| |
| uint32_t getSizeOfDimension(const Shape& shape, uint32_t dimensionIdx) { |
| if (dimensionIdx >= shape.dimensions.size()) { |
| // TODO, log the error |
| return 0; |
| } |
| return shape.dimensions[dimensionIdx]; |
| } |
| |
| |
| void QuantizeMultiplierSmallerThanOne(double double_multiplier, |
| int32_t* quantized_multiplier, |
| int32_t* right_shift) { |
| CHECK(double_multiplier >= 0.); |
| CHECK(double_multiplier < 1.); |
| if (double_multiplier == 0.) { |
| *quantized_multiplier = 0; |
| *right_shift = 0; |
| return; |
| } |
| CHECK(double_multiplier > 0.); |
| const double q = std::frexp(double_multiplier, right_shift); |
| *right_shift *= -1; |
| int64_t q_fixed = static_cast<int64_t>(std::round(q * (1ll << 31))); |
| CHECK(q_fixed <= (1ll << 31)); |
| if (q_fixed == (1ll << 31)) { |
| q_fixed /= 2; |
| --*right_shift; |
| } |
| CHECK_GE(*right_shift, 0); |
| CHECK_LE(q_fixed, std::numeric_limits<int32_t>::max()); |
| *quantized_multiplier = static_cast<int32_t>(q_fixed); |
| } |
| |
| void QuantizeMultiplierGreaterThanOne(double double_multiplier, |
| int32_t* quantized_multiplier, |
| int* left_shift) { |
| CHECK(double_multiplier > 1.); |
| const double q = std::frexp(double_multiplier, left_shift); |
| int64_t q_fixed = static_cast<int64_t>(std::round(q * (1ll << 31))); |
| CHECK(q_fixed <= (1ll << 31)); |
| if (q_fixed == (1ll << 31)) { |
| q_fixed /= 2; |
| ++*left_shift; |
| } |
| CHECK_GE(*left_shift, 0); |
| CHECK_LE(q_fixed, std::numeric_limits<int32_t>::max()); |
| *quantized_multiplier = static_cast<int32_t>(q_fixed); |
| } |
| |
| void GetQuantizedConvolutionMultipler(const Shape& inputShape, |
| const Shape& filterShape, |
| const Shape& biasShape, |
| const Shape& outputShape, |
| float* multiplier) { |
| const float input_product_scale = inputShape.scale * filterShape.scale; |
| const float bias_scale = biasShape.scale; |
| const float output_scale = outputShape.scale; |
| |
| // The following conditions must be guaranteed by the training pipeline. |
| CHECK(std::abs(input_product_scale - bias_scale) <= |
| 1e-6 * std::min(input_product_scale, bias_scale)); |
| CHECK(input_product_scale >= 0); |
| CHECK(input_product_scale < output_scale); |
| *multiplier = input_product_scale / output_scale; |
| } |
| |
| void CalculateActivationRangeUint8(int32_t activation, |
| const Shape& outputShape, |
| int32_t* act_min, |
| int32_t* act_max) { |
| const int32_t qmin = std::numeric_limits<uint8_t>::min(); |
| const int32_t qmax = std::numeric_limits<uint8_t>::max(); |
| |
| const auto scale = outputShape.scale; |
| const auto zero_point = outputShape.offset; |
| |
| auto quantize = [scale, zero_point](float f) { |
| return zero_point + static_cast<int32_t>(std::round(f / scale)); |
| }; |
| |
| if (activation == kActivationRelu) { |
| *act_min = std::max(qmin, quantize(0.0)); |
| *act_max = qmax; |
| } else if (activation == kActivationRelu6) { |
| *act_min = std::max(qmin, quantize(0.0)); |
| *act_max = std::min(qmax, quantize(6.0)); |
| } else if (activation == kActivationRelu1) { |
| *act_min = std::max(qmin, quantize(-1.0)); |
| *act_max = std::min(qmax, quantize(1.0)); |
| } else { |
| *act_min = qmin; |
| *act_max = qmax; |
| } |
| } |
| |
| int32_t CalculateInputRadius(int input_integer_bits, int input_left_shift) { |
| const double max_input_rescaled = 1.0 * ((1 << input_integer_bits) - 1) * |
| (1ll << (31 - input_integer_bits)) / |
| (1ll << input_left_shift); |
| // Tighten bound using floor. Suppose that we could use the exact value. |
| // After scaling the difference, the result would be at the maximum. Thus we |
| // must ensure that our value has lower magnitude. |
| return static_cast<int32_t>(std::floor(max_input_rescaled)); |
| } |
| |
| |
| // Macro to check if the input parameters for operation are valid or not. |
| #define nnOpsCheck(v) \ |
| if (!(v)) { \ |
| LOG(ERROR) << "nnOpsCheck failed: " << #v << "'\n"; \ |
| return false; \ |
| } |
| |
| bool addMulPrepare(const Shape& in1, const Shape& in2, Shape* out) { |
| nnOpsCheck(getNumberOfDimensions(in1) <= 4 && getNumberOfDimensions(in2) <= 4); |
| if (SameShape(in1, in2)) { |
| return SetShape(in1, out); |
| } else { |
| // BroadcastAdd needed |
| uint32_t numberOfDims1 = getNumberOfDimensions(in1); |
| uint32_t numberOfDims2 = getNumberOfDimensions(in2); |
| uint32_t maxDims = std::max(numberOfDims1, numberOfDims2); |
| out->dimensions = std::vector<uint32_t>(maxDims); |
| for (uint32_t i = 1; i <= maxDims; i++) { |
| uint32_t dim1 = 1; |
| if (i <= numberOfDims1) { |
| dim1 = getSizeOfDimension(in1, numberOfDims1 - i); |
| } |
| uint32_t dim2 = 1; |
| if (i <= numberOfDims2) { |
| dim2 = getSizeOfDimension(in2, numberOfDims2 - i); |
| } |
| if (dim1 != dim2 && dim1 != 1 && dim2 != 1) { |
| LOG(ERROR) << "Dimensions mismatch for BroadcastAdd"; |
| return false; |
| } |
| out->dimensions[maxDims - i] = std::max(dim1, dim2); |
| } |
| } |
| return true; |
| } |
| |
| bool floorPrepare(const Shape& input, Shape* output) { |
| return SetShape(input, output); |
| } |
| |
| bool dequantizePrepare(const Shape& input, Shape* output) { |
| if (input.type != OperandType::TENSOR_QUANT8_ASYMM || |
| output->type != OperandType::TENSOR_FLOAT32) { |
| LOG(ERROR) << "bad input / output operand type."; |
| return false; |
| } |
| if (input.dimensions.size() != output->dimensions.size()) { |
| LOG(ERROR) << "input and output tensors don't have the same rank."; |
| return false; |
| } |
| output->dimensions = input.dimensions; |
| return true; |
| } |
| |
| bool convPrepare(const Shape& input, |
| const Shape& filter, |
| const Shape& bias, |
| int32_t padding_left, int32_t padding_right, |
| int32_t padding_top, int32_t padding_bottom, |
| int32_t stride_width, int32_t stride_height, |
| Shape* output) { |
| nnOpsCheck(getNumberOfDimensions(input) == 4); |
| nnOpsCheck(getNumberOfDimensions(filter) == 4); |
| nnOpsCheck(getNumberOfDimensions(bias) == 1); |
| |
| nnOpsCheck(getSizeOfDimension(filter, 0) == getSizeOfDimension(bias, 0)); |
| nnOpsCheck(getSizeOfDimension(filter, 3) == getSizeOfDimension(input, 3)); |
| |
| nnOpsCheck(stride_width == stride_height); |
| |
| uint32_t channels_out = getSizeOfDimension(filter, 0); |
| uint32_t width = getSizeOfDimension(input, 2); |
| uint32_t height = getSizeOfDimension(input, 1); |
| uint32_t filterWidth = getSizeOfDimension(filter, 2); |
| uint32_t filterHeight = getSizeOfDimension(filter, 1); |
| uint32_t batches = getSizeOfDimension(input, 0); |
| |
| uint32_t outWidth = computeOutSize(width, filterWidth, stride_width, |
| padding_left, padding_right); |
| uint32_t outHeight = computeOutSize(height, filterHeight, stride_height, |
| padding_top, padding_bottom); |
| |
| output->type = input.type; |
| output->dimensions = {batches, outHeight, outWidth, channels_out}; |
| return true; |
| } |
| |
| bool depthwiseConvPrepare(const Shape& input, |
| const Shape& filter, |
| const Shape& bias, |
| int32_t padding_left, int32_t padding_right, |
| int32_t padding_top, int32_t padding_bottom, |
| int32_t stride_width, int32_t stride_height, |
| Shape* output) { |
| nnOpsCheck(getNumberOfDimensions(input) == 4); |
| nnOpsCheck(getNumberOfDimensions(filter) == 4); |
| nnOpsCheck(getNumberOfDimensions(bias) == 1); |
| |
| nnOpsCheck(getSizeOfDimension(filter, 3) == getSizeOfDimension(bias, 0)); |
| |
| nnOpsCheck(stride_width == stride_height); |
| |
| uint32_t channels_out = getSizeOfDimension(filter, 3); |
| uint32_t width = getSizeOfDimension(input, 2); |
| uint32_t height = getSizeOfDimension(input, 1); |
| uint32_t filterWidth = getSizeOfDimension(filter, 2); |
| uint32_t filterHeight = getSizeOfDimension(filter, 1); |
| uint32_t batches = getSizeOfDimension(input, 0); |
| |
| uint32_t outWidth = computeOutSize(width, filterWidth, stride_width, |
| padding_left, padding_right); |
| uint32_t outHeight = computeOutSize(height, filterHeight, stride_height, |
| padding_top, padding_bottom); |
| |
| output->type = input.type; |
| output->dimensions = {batches, outHeight, outWidth, channels_out}; |
| return true; |
| } |
| |
| |
| bool genericPoolingPrepare(const Shape& input, |
| int32_t padding_left, int32_t padding_right, |
| int32_t padding_top, int32_t padding_bottom, |
| int32_t stride_width, int32_t stride_height, |
| int32_t filter_width, int32_t filter_height, |
| Shape* output) { |
| nnOpsCheck(getNumberOfDimensions(input) == 4); |
| nnOpsCheck(stride_width == stride_height); |
| |
| uint32_t batches = getSizeOfDimension(input, 0); |
| uint32_t width = getSizeOfDimension(input, 2); |
| uint32_t height = getSizeOfDimension(input, 1); |
| uint32_t channels_out = getSizeOfDimension(input, 3); |
| |
| uint32_t outWidth = computeOutSize(width, filter_width, stride_width, |
| padding_left, padding_right); |
| uint32_t outHeight = computeOutSize(height, filter_height, stride_height, |
| padding_top, padding_bottom); |
| |
| output->type = input.type; |
| output->dimensions = {batches, outHeight, outWidth, channels_out}; |
| return true; |
| } |
| |
| |
| bool genericActivationPrepare(const Shape& input, |
| Shape* output) { |
| nnOpsCheck(getNumberOfDimensions(input) <= 4); |
| return SetShape(input, output); |
| } |
| |
| bool fullyConnectedPrepare(const Shape& input, |
| const Shape& weights, |
| const Shape& bias, |
| Shape* output) { |
| // Check all the parameters of tensor match within themselves and match the |
| // input configuration. |
| uint32_t input_size = getNumberOfElements(input); |
| uint32_t num_units = getSizeOfDimension(weights, 0); |
| uint32_t batch_size = input_size / getSizeOfDimension(weights, 1); |
| |
| nnOpsCheck(getSizeOfDimension(bias, 0) == num_units); |
| nnOpsCheck(getSizeOfDimension(weights, 1) * batch_size == input_size); |
| nnOpsCheck(getNumberOfDimensions(weights) == 2); |
| |
| output->type = input.type; |
| output->dimensions = {batch_size, num_units}; |
| |
| return true; |
| } |
| |
| bool concatenationPrepare(const std::vector<Shape>& inputShapes, |
| int32_t axis, |
| Shape* output) { |
| |
| int num_inputs = inputShapes.size(); |
| OperandType input_type = inputShapes[0].type; |
| uint32_t num_dimensions = getNumberOfDimensions(inputShapes[0]); |
| |
| nnOpsCheck(axis >= 0); |
| nnOpsCheck(axis < (int32_t)num_dimensions); |
| |
| int sum_axis = getSizeOfDimension(inputShapes[0], axis); |
| for (int i = 1; i < num_inputs; ++i) { |
| nnOpsCheck(getNumberOfDimensions(inputShapes[i]) == num_dimensions); |
| nnOpsCheck(inputShapes[i].type == inputShapes[0].type); |
| if (input_type == OperandType::TENSOR_QUANT8_ASYMM) { |
| nnOpsCheck(inputShapes[0].offset == inputShapes[i].offset); |
| nnOpsCheck(inputShapes[0].scale == inputShapes[i].scale); |
| } |
| for (int d = 0; d < (int32_t)num_dimensions; ++d) { |
| if (d == axis) { |
| sum_axis += getSizeOfDimension(inputShapes[i], axis); |
| } else { |
| nnOpsCheck(getSizeOfDimension(inputShapes[0], d) == |
| getSizeOfDimension(inputShapes[i], d)); |
| } |
| } |
| } |
| |
| output->type = input_type; |
| output->dimensions = inputShapes[0].dimensions; |
| output->dimensions[axis] = sum_axis; |
| |
| if (input_type == OperandType::TENSOR_QUANT8_ASYMM) { |
| nnOpsCheck(inputShapes[0].offset == output->offset); |
| nnOpsCheck(inputShapes[0].scale == output->scale); |
| } |
| |
| return true; |
| } |
| |
| |
| bool genericNormalizationPrepare(const Shape& input, Shape* output) { |
| nnOpsCheck(getNumberOfDimensions(input) == 4); |
| return SetShape(input, output); |
| } |
| |
| bool reshapePrepare(const Shape& input, |
| const int32_t* targetDims, |
| const int32_t targetDimsSize, |
| Shape* output) { |
| // Reshape allows one of the targetDims components to have the |
| // special -1 value, meaning it will be calculated automatically based on the |
| // input. Here we calculate what that dimension should be so that the number |
| // of output elements in the same as the number of input elements. |
| int32_t numInputElements = (int32_t) getNumberOfElements(input); |
| |
| std::vector<uint32_t> outDims(targetDimsSize); |
| int32_t numOutputElements = 1; |
| int32_t strechDim = -1; |
| for (int32_t i = 0; i < targetDimsSize; ++i) { |
| int32_t value = targetDims[i]; |
| if (value == -1) { |
| nnOpsCheck(strechDim == -1); |
| strechDim = i; |
| } else { |
| numOutputElements *= value; |
| outDims[i] = (uint32_t)value; |
| } |
| } |
| if (strechDim != -1) { |
| int32_t strechValue = numInputElements / numOutputElements; |
| outDims[strechDim] = (uint32_t) strechValue; |
| numOutputElements *= strechValue; |
| } |
| |
| nnOpsCheck(numInputElements == numOutputElements); |
| |
| output->type = input.type; |
| output->dimensions = outDims; |
| output->offset = input.offset; |
| output->scale = input.scale; |
| |
| return true; |
| } |
| |
| bool resizeBilinearPrepare(const Shape& input, |
| int32_t width, |
| int32_t height, |
| Shape* output) { |
| nnOpsCheck(getNumberOfDimensions(input) == 4); |
| uint32_t batches = getSizeOfDimension(input, 0); |
| uint32_t channels = getSizeOfDimension(input, 3); |
| |
| output->type = input.type; |
| output->dimensions = {batches, (uint32_t)height, (uint32_t)width, channels}; |
| |
| return true; |
| } |
| |
| bool depthToSpacePrepare(const Shape& input, |
| int32_t blockSize, |
| Shape* output) { |
| nnOpsCheck(getNumberOfDimensions(input) == 4); |
| nnOpsCheck(blockSize > 0); |
| |
| uint32_t batches = getSizeOfDimension(input, 0); |
| uint32_t height = getSizeOfDimension(input, 1); |
| uint32_t width = getSizeOfDimension(input, 2); |
| uint32_t channels = getSizeOfDimension(input, 3); |
| |
| nnOpsCheck(channels % (blockSize * blockSize) == 0); |
| output->type = input.type; |
| output->dimensions = {batches, |
| height * blockSize, |
| width * blockSize, |
| channels / (blockSize * blockSize)}; |
| output->offset = input.offset; |
| output->scale = input.scale; |
| |
| return true; |
| } |
| |
| bool spaceToDepthPrepare(const Shape& input, |
| int32_t blockSize, |
| Shape* output) { |
| nnOpsCheck(getNumberOfDimensions(input) == 4); |
| nnOpsCheck(blockSize > 0); |
| |
| uint32_t batches = getSizeOfDimension(input, 0); |
| uint32_t height = getSizeOfDimension(input, 1); |
| uint32_t width = getSizeOfDimension(input, 2); |
| uint32_t channels = getSizeOfDimension(input, 3); |
| |
| nnOpsCheck(height % blockSize == 0); |
| nnOpsCheck(width % blockSize == 0); |
| |
| output->type = input.type; |
| output->dimensions = {batches, |
| height / blockSize, |
| width / blockSize, |
| channels * (blockSize * blockSize)}; |
| output->offset = input.offset; |
| output->scale = input.scale; |
| |
| return true; |
| } |
| |
| } // namespace nn |
| } // namespace android |