| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "Memory" |
| |
| #include "Memory.h" |
| |
| #include <android-base/scopeguard.h> |
| #include <android/hardware_buffer.h> |
| #include <cutils/native_handle.h> |
| #include <vndk/hardware_buffer.h> |
| |
| #include <algorithm> |
| #include <memory> |
| #include <set> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| #include "CompilationBuilder.h" |
| #include "CpuExecutor.h" |
| #include "ExecutionBurstController.h" |
| #include "Manager.h" |
| #include "MemoryUtils.h" |
| #include "TypeManager.h" |
| #include "Utils.h" |
| |
| namespace android { |
| namespace nn { |
| |
| using namespace hal; |
| |
| namespace { |
| |
| // The validator for a client-managed single-dimensional memory pool with a known size. |
| // The memory may be used for request inputs, request outputs, or model constants. |
| class SizedMemoryValidator : public MemoryValidatorBase { |
| public: |
| SizedMemoryValidator(uint32_t size) : kSize(size) {} |
| |
| bool validate(const CompilationBuilder*, IOType, uint32_t, const ANeuralNetworksOperandType*, |
| uint32_t offset, uint32_t length) const override { |
| NN_RET_CHECK(offset + length <= kSize) << "request size larger than the memory size."; |
| NN_RET_CHECK(offset != 0 || length != 0) << "memory size cannot be implied."; |
| return true; |
| } |
| |
| Metadata getMetadata() const override { return {.logicalSize = kSize}; } |
| bool updateMetadata(const Metadata& metadata) override { |
| return metadata.logicalSize == 0 || metadata.logicalSize == kSize; |
| } |
| |
| private: |
| const uint32_t kSize; |
| }; |
| |
| // The validator for an AHardwareBuffer with Non-BLOB format. |
| // We require the memory only used for request inputs or request outputs, |
| // with both offset and length set to zero. |
| class AHardwareBufferNonBlobValidator : public MemoryValidatorBase { |
| public: |
| AHardwareBufferNonBlobValidator() = default; |
| |
| bool validate(const CompilationBuilder* compilation, IOType, uint32_t, |
| const ANeuralNetworksOperandType*, uint32_t offset, |
| uint32_t length) const override { |
| NN_RET_CHECK(compilation != nullptr) |
| << "cannot use Non-BLOB AHardwareBuffer as model constant"; |
| NN_RET_CHECK(offset == 0 && length == 0) |
| << "non-zero offset (" << offset << ") and/or length (" << length |
| << ") for Non-BLOB format AHardwareBuffer."; |
| return true; |
| } |
| |
| Metadata getMetadata() const override { return {}; } |
| bool updateMetadata(const Metadata&) override { return true; } |
| }; |
| |
| // The validator for a memory created from ANNMemory_createFromDesc. |
| // We require the memory only used as one of the pre-specified roles, |
| // with both offset and length set to zero. |
| class DeviceMemoryValidator : public MemoryValidatorBase { |
| public: |
| DeviceMemoryValidator(std::set<CompilationRole> roles, Operand operand, |
| std::vector<uint32_t> dimensions) |
| : kCompilationRoles(std::move(roles)), |
| kOperand(std::move(operand)), |
| kInitialDimensions(std::move(dimensions)), |
| mUpdatedDimensions(kInitialDimensions) {} |
| |
| bool validate(const CompilationBuilder* compilation, IOType ioType, uint32_t index, |
| const ANeuralNetworksOperandType* type, uint32_t offset, |
| uint32_t length) const override { |
| NN_RET_CHECK(kCompilationRoles.count({compilation, ioType, index}) > 0) |
| << "invalid compilation role."; |
| NN_RET_CHECK(offset == 0 && length == 0) |
| << "non-zero offset and/or length for driver-allocated memory."; |
| if (type) { |
| const bool isTensor = TypeManager::get()->isTensorType(kOperand.type); |
| NN_RET_CHECK(isTensor || type->dimensionCount == 0) |
| << "invalid dimensions for scalar memory."; |
| std::vector<uint32_t> dimensions(type->dimensions, |
| type->dimensions + type->dimensionCount); |
| // We only check against kInitialDimensions here. |
| // For input memories, mUpdatedDimensions will be checked in validateInputDimensions |
| // at the beginning of a computation. |
| const auto combined = combineDimensions(dimensions, kInitialDimensions); |
| NN_RET_CHECK(combined.has_value()) |
| << "incompatible dimensions between request and memory. (request: " |
| << toString(dimensions) << ", memory: " << toString(kInitialDimensions) << ")"; |
| } |
| return true; |
| } |
| |
| bool validateInputDimensions(const std::vector<uint32_t>& dimensions) const override { |
| NN_RET_CHECK(mInitialized) << "using an uninitialized memory as input"; |
| NN_RET_CHECK(dimensions == mUpdatedDimensions) |
| << "incompatible input dimensions between request and memory. (request: " |
| << toString(dimensions) << ", memory: " << toString(mUpdatedDimensions) << ")"; |
| return true; |
| } |
| |
| Metadata getMetadata() const override { |
| CHECK(mInitialized); |
| return {.logicalSize = TypeManager::get()->getSizeOfData(kOperand.type, mUpdatedDimensions), |
| .dimensions = mUpdatedDimensions, |
| .operand = kOperand}; |
| } |
| |
| bool updateMetadata(const Metadata& metadata) override { |
| NN_RET_CHECK(!metadata.operand.has_value() || |
| (metadata.operand->type == kOperand.type && |
| metadata.operand->scale == kOperand.scale && |
| metadata.operand->zeroPoint == kOperand.zeroPoint && |
| metadata.operand->extraParams == kOperand.extraParams)); |
| |
| NN_RET_CHECK(metadata.dimensions.empty() || |
| TypeManager::get()->isTensorType(kOperand.type)); |
| auto combined = combineDimensions(metadata.dimensions, kInitialDimensions); |
| NN_RET_CHECK(combined.has_value()); |
| NN_RET_CHECK(metadata.logicalSize == 0 || |
| metadata.logicalSize == |
| TypeManager::get()->getSizeOfData(kOperand.type, combined.value())); |
| mUpdatedDimensions = std::move(combined.value()); |
| return true; |
| } |
| |
| void setInitialized(bool initialized) override { mInitialized = initialized; } |
| bool isInitialized() const override { return mInitialized; } |
| |
| private: |
| const std::set<CompilationRole> kCompilationRoles; |
| |
| // Keep track of the data type, scale, zero point, and extra parameters of the target operand. |
| // Other fields will be ignored, including dimensions, lifetime, location, etc. |
| const Operand kOperand; |
| |
| // The dimensions of the memory when the memory object is created. |
| // May have unknown dimensions or rank. |
| const std::vector<uint32_t> kInitialDimensions; |
| |
| // The updated dimensions after a successful execution or memory copying. |
| std::vector<uint32_t> mUpdatedDimensions; |
| |
| bool mInitialized = false; |
| }; |
| |
| } // namespace |
| |
| Memory::Memory(hal::hidl_memory memory) |
| : kHidlMemory(std::move(memory)), |
| mValidator(std::make_unique<SizedMemoryValidator>(kHidlMemory.size())) {} |
| |
| Memory::Memory(hal::hidl_memory memory, std::unique_ptr<MemoryValidatorBase> validator) |
| : kHidlMemory(std::move(memory)), mValidator(std::move(validator)) {} |
| |
| Memory::Memory(sp<hal::IBuffer> buffer, uint32_t token) |
| : kBuffer(std::move(buffer)), kToken(token) {} |
| |
| Memory::~Memory() { |
| for (const auto [ptr, weakBurst] : mUsedBy) { |
| if (const std::shared_ptr<ExecutionBurstController> burst = weakBurst.lock()) { |
| burst->freeMemory(getKey()); |
| } |
| } |
| } |
| |
| Request::MemoryPool Memory::getMemoryPool() const { |
| Request::MemoryPool pool; |
| if (kToken > 0) { |
| pool.token(kToken); |
| } else { |
| pool.hidlMemory(kHidlMemory); |
| } |
| return pool; |
| } |
| |
| std::optional<RunTimePoolInfo> Memory::getRunTimePoolInfo() const { |
| std::lock_guard<std::mutex> guard(mMutex); |
| if (!mHasCachedRunTimePoolInfo) { |
| mCachedRunTimePoolInfo = RunTimePoolInfo::createFromHidlMemory(kHidlMemory); |
| mHasCachedRunTimePoolInfo = true; |
| } |
| return mCachedRunTimePoolInfo; |
| } |
| |
| intptr_t Memory::getKey() const { |
| return reinterpret_cast<intptr_t>(this); |
| } |
| |
| void Memory::usedBy(const std::shared_ptr<ExecutionBurstController>& burst) const { |
| std::lock_guard<std::mutex> guard(mMutex); |
| mUsedBy.emplace(burst.get(), burst); |
| } |
| |
| static int copyHidlMemories(const std::optional<RunTimePoolInfo>& src, |
| const std::optional<RunTimePoolInfo>& dst) { |
| if (!src.has_value() || !dst.has_value()) { |
| LOG(ERROR) << "ANeuralNetworksMemory_copy -- unable to map memory"; |
| return ANEURALNETWORKS_UNMAPPABLE; |
| } |
| if (src->getSize() != dst->getSize()) { |
| LOG(ERROR) << "ANeuralNetworksMemory_copy -- incompatible memory size"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| CHECK(src->getBuffer() != nullptr); |
| CHECK(dst->getBuffer() != nullptr); |
| std::copy(src->getBuffer(), src->getBuffer() + src->getSize(), dst->getBuffer()); |
| dst->flush(); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| static int copyIBufferToHidlMemory(const sp<IBuffer>& src, const hidl_memory& dst) { |
| const auto ret = src->copyTo(dst); |
| if (!ret.isOk()) { |
| LOG(ERROR) << "ANeuralNetworksMemory_copy failure: " << ret.description(); |
| return ANEURALNETWORKS_OP_FAILED; |
| } |
| return convertErrorStatusToResultCode(static_cast<ErrorStatus>(ret)); |
| } |
| |
| static int copyHidlMemoryToIBuffer(const hidl_memory& src, const sp<IBuffer>& dst, |
| const std::vector<uint32_t>& dimensions) { |
| const auto ret = dst->copyFrom(src, dimensions); |
| if (!ret.isOk()) { |
| LOG(ERROR) << "ANeuralNetworksMemory_copy failure: " << ret.description(); |
| return ANEURALNETWORKS_OP_FAILED; |
| } |
| return convertErrorStatusToResultCode(static_cast<ErrorStatus>(ret)); |
| } |
| |
| static int copyIBuffers(const sp<IBuffer>& src, const sp<IBuffer>& dst, |
| const MemoryValidatorBase::Metadata& srcMetadata) { |
| const auto [n, memory] = MemoryRuntimeAHWB::create(srcMetadata.logicalSize); |
| NN_RETURN_IF_ERROR(n); |
| const hidl_memory& hidlMemory = memory->getHidlMemory(); |
| if (!hidlMemory.valid()) return ANEURALNETWORKS_OUT_OF_MEMORY; |
| NN_RETURN_IF_ERROR(copyIBufferToHidlMemory(src, hidlMemory)); |
| NN_RETURN_IF_ERROR(copyHidlMemoryToIBuffer(hidlMemory, dst, srcMetadata.dimensions)); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| static int copyInternal(const Memory& src, const Memory& dst) { |
| if (&src == &dst) return ANEURALNETWORKS_NO_ERROR; |
| |
| if (!src.getValidator().isInitialized()) { |
| LOG(ERROR) << "ANeuralNetworksMemory_copy -- uninitialized source memory"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| const auto srcMetadata = src.getValidator().getMetadata(); |
| if (!dst.getValidator().updateMetadata(srcMetadata)) { |
| LOG(ERROR) << "ANeuralNetworksMemory_copy -- incompatible memories"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| bool srcHasHidlMemory = src.getHidlMemory().valid(); |
| bool dstHasHidlMemory = dst.getHidlMemory().valid(); |
| bool srcHasIBuffer = src.getIBuffer() != nullptr; |
| bool dstHasIBuffer = dst.getIBuffer() != nullptr; |
| if (srcHasIBuffer && dstHasIBuffer) { |
| return copyIBuffers(src.getIBuffer(), dst.getIBuffer(), srcMetadata); |
| } else if (srcHasHidlMemory && dstHasHidlMemory) { |
| return copyHidlMemories(src.getRunTimePoolInfo(), dst.getRunTimePoolInfo()); |
| } else if (srcHasHidlMemory && dstHasIBuffer) { |
| return copyHidlMemoryToIBuffer(src.getHidlMemory(), dst.getIBuffer(), |
| srcMetadata.dimensions); |
| } else if (srcHasIBuffer && dstHasHidlMemory) { |
| return copyIBufferToHidlMemory(src.getIBuffer(), dst.getHidlMemory()); |
| } |
| return ANEURALNETWORKS_OP_FAILED; |
| } |
| |
| int Memory::copy(const Memory& src, const Memory& dst) { |
| int n = copyInternal(src, dst); |
| dst.getValidator().setInitialized(n == ANEURALNETWORKS_NO_ERROR); |
| return n; |
| } |
| |
| bool MemoryBuilder::badState(const char* name) const { |
| if (mFinished) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << name << " can't modify after finished"; |
| return true; |
| } |
| return false; |
| } |
| |
| int MemoryBuilder::addRole(const CompilationBuilder& compilation, IOType ioType, uint32_t index, |
| float freq) { |
| const char* tag = ioType == IOType::INPUT ? "addInputRole" : "addOutputRole"; |
| if (badState(tag)) { |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (mRoles.count({&compilation, ioType, index}) > 0) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag |
| << " -- the same operand is specified twice."; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| std::vector<std::tuple<const PreparedModel*, IOType, uint32_t>> roles; |
| auto callback = [&roles](const auto* preparedModel, IOType type, uint32_t index) { |
| roles.emplace_back(preparedModel, type, index); |
| }; |
| if (ioType == IOType::INPUT) { |
| if (compilation.forEachStepRoleOfInput(index, callback) != ANEURALNETWORKS_NO_ERROR) { |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| } else { |
| if (compilation.forEachStepRoleOfOutput(index, callback) != ANEURALNETWORKS_NO_ERROR) { |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| } |
| |
| const ModelBuilder* model = compilation.getModel(); |
| CHECK(model != nullptr); |
| Operand operand; |
| if (ioType == IOType::INPUT) { |
| if (index >= model->inputCount()) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_addInputRole -- input index out of range."; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| operand = model->getInputOperand(index); |
| } else { |
| if (index >= model->outputCount()) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_addOutputRole -- output index out of range."; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| operand = model->getOutputOperand(index); |
| } |
| if (mOperand.has_value()) { |
| if (operand.type != mOperand->type || operand.scale != mOperand->scale || |
| operand.zeroPoint != mOperand->zeroPoint || |
| operand.extraParams != mOperand->extraParams) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag |
| << " -- incompatible operand metadata."; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| } |
| if (!TypeManager::get()->isTensorType(operand.type) && !mDesc.dimensions.empty()) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- incompatible dimensions."; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto combined = combineDimensions(mDesc.dimensions, operand.dimensions); |
| if (!combined.has_value()) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- incompatible dimensions."; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| if (freq > 1.0f || freq <= 0.0f) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- invalid frequency " << freq; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| mRoles.emplace(&compilation, ioType, index); |
| for (const auto [preparedModel, type, ind] : roles) { |
| uint32_t modelIndex = mDesc.preparedModels.add(preparedModel); |
| BufferRole role = {.modelIndex = modelIndex, .ioIndex = ind, .frequency = freq}; |
| if (type == IOType::INPUT) { |
| mDesc.inputRoles.push_back(role); |
| } else { |
| mDesc.outputRoles.push_back(role); |
| } |
| } |
| mOperand = std::move(operand); |
| mDesc.dimensions = std::move(combined.value()); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int MemoryBuilder::setDimensions(const std::vector<uint32_t>& dimensions) { |
| if (badState("setDimensions")) return ANEURALNETWORKS_BAD_STATE; |
| if (mOperand.has_value() && !TypeManager::get()->isTensorType(mOperand->type) && |
| !dimensions.empty()) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_setDimensions -- incompatible dimensions for " |
| "scalars."; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto combined = combineDimensions(mDesc.dimensions, dimensions); |
| if (!combined.has_value()) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_setDimensions -- incompatible dimensions."; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| mDesc.dimensions = std::move(combined.value()); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| static void logMemoryDescriptorToInfo(const MemoryDescriptor& desc, const Operand& operand) { |
| LOG(INFO) << "MemoryDescriptor start"; |
| LOG(INFO) << " Data type: " << toString(operand.type); |
| LOG(INFO) << " Scale: " << toString(operand.scale); |
| LOG(INFO) << " Zero point: " << toString(operand.zeroPoint); |
| LOG(INFO) << " Extra params: " << toString(operand.extraParams); |
| LOG(INFO) << " Dimensions: " << toString(desc.dimensions); |
| LOG(INFO) << " Prepared models [" << desc.preparedModels.size() << "]:"; |
| for (const auto* preparedModel : desc.preparedModels) { |
| LOG(INFO) << " service = " << preparedModel->getDevice()->getName(); |
| } |
| LOG(INFO) << " Input roles [" << desc.inputRoles.size() << "]:"; |
| for (const auto& usage : desc.inputRoles) { |
| LOG(INFO) << " " << toString(usage); |
| } |
| LOG(INFO) << " Output roles [" << desc.outputRoles.size() << "]:"; |
| for (const auto& usage : desc.outputRoles) { |
| LOG(INFO) << " " << toString(usage); |
| } |
| LOG(INFO) << "MemoryDescriptor end"; |
| } |
| |
| static std::set<const Device*> getDevices(const MemoryDescriptor& desc) { |
| std::set<const Device*> devices; |
| for (const auto* preparedModel : desc.preparedModels) { |
| const auto* device = preparedModel->getDevice(); |
| devices.insert(device); |
| } |
| return devices; |
| } |
| |
| int MemoryBuilder::finish() { |
| if (badState("finish")) return ANEURALNETWORKS_BAD_STATE; |
| if (mRoles.empty()) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_finish -- no role has been specified."; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| CHECK(mOperand.has_value()); |
| if (VLOG_IS_ON(MEMORY)) { |
| logMemoryDescriptorToInfo(mDesc, mOperand.value()); |
| } |
| std::set<const Device*> devices = getDevices(mDesc); |
| if (devices.empty()) { |
| // This can happen with interpreted control flow. |
| mAllocator = nullptr; |
| } else if (devices.size() == 1) { |
| mAllocator = *devices.begin(); |
| VLOG(MEMORY) << "Using " << mAllocator->getName() << " as allocator."; |
| } else { |
| LOG(INFO) << "MemoryBuilder::finish -- cannot handle multiple devices."; |
| mAllocator = nullptr; |
| } |
| mSupportsAhwb = std::all_of(devices.begin(), devices.end(), [](const auto* device) { |
| return device->getFeatureLevel() >= __ANDROID_API_Q__; |
| }); |
| mShouldFallback = std::none_of(mRoles.begin(), mRoles.end(), [](const auto& role) { |
| const auto* cb = std::get<const CompilationBuilder*>(role); |
| return cb->createdWithExplicitDeviceList(); |
| }); |
| mFinished = true; |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| std::pair<int, std::unique_ptr<Memory>> MemoryBuilder::allocate() const { |
| if (!mFinished) { |
| LOG(ERROR) << "ANeuralNetworksMemory_createFromDesc -- passed an unfinished descriptor"; |
| return {ANEURALNETWORKS_BAD_STATE, nullptr}; |
| } |
| |
| // TODO(xusongw): Does not support dynamic output shape for now. |
| CHECK(mOperand.has_value()); |
| uint32_t size = TypeManager::get()->getSizeOfData(mOperand->type, mDesc.dimensions); |
| if (size == 0) { |
| LOG(ERROR) |
| << "ANeuralNetworksMemory_createFromDesc -- does not support unknown dimensions."; |
| return {ANEURALNETWORKS_OP_FAILED, nullptr}; |
| } |
| |
| int n = ANEURALNETWORKS_OP_FAILED; |
| std::unique_ptr<Memory> memory; |
| |
| // Try allocate the memory on device. |
| if (mAllocator != nullptr) { |
| std::tie(n, memory) = mAllocator->allocate(mDesc, mOperand->type); |
| } |
| |
| // If failed, fallback to ashmem or BLOB mode AHWB. |
| if (n != ANEURALNETWORKS_NO_ERROR && mShouldFallback) { |
| if (mSupportsAhwb) { |
| VLOG(MEMORY) << "MemoryBuilder::allocate -- fallback to BLOB mode AHWB."; |
| std::tie(n, memory) = MemoryRuntimeAHWB::create(size); |
| } else { |
| VLOG(MEMORY) << "MemoryBuilder::allocate -- fallback to ashmem."; |
| std::tie(n, memory) = MemoryAshmem::create(size); |
| } |
| } |
| |
| if (n == ANEURALNETWORKS_NO_ERROR) { |
| CHECK(memory != nullptr); |
| auto validator = |
| std::make_unique<DeviceMemoryValidator>(mRoles, mOperand.value(), mDesc.dimensions); |
| memory->setValidator(std::move(validator)); |
| } |
| return {n, std::move(memory)}; |
| } |
| |
| std::pair<int, std::unique_ptr<MemoryAshmem>> MemoryAshmem::create(uint32_t size) { |
| hidl_memory hidlMemory = allocateSharedMemory(size); |
| sp<IMemory> mapped = mapMemory(hidlMemory); |
| if (mapped == nullptr || mapped->getPointer() == nullptr) { |
| LOG(ERROR) << "Memory::create failed"; |
| return {ANEURALNETWORKS_OUT_OF_MEMORY, nullptr}; |
| } |
| return {ANEURALNETWORKS_NO_ERROR, |
| std::make_unique<MemoryAshmem>(std::move(mapped), std::move(hidlMemory))}; |
| } |
| |
| uint8_t* MemoryAshmem::getPointer() const { |
| return static_cast<uint8_t*>(static_cast<void*>(kMappedMemory->getPointer())); |
| } |
| |
| MemoryAshmem::MemoryAshmem(sp<IMemory> mapped, hidl_memory memory) |
| : Memory(std::move(memory)), kMappedMemory(std::move(mapped)) {} |
| |
| std::pair<int, std::unique_ptr<MemoryFd>> MemoryFd::create(size_t size, int prot, int fd, |
| size_t offset) { |
| if (size == 0 || fd < 0) { |
| LOG(ERROR) << "Invalid size or fd"; |
| return {ANEURALNETWORKS_BAD_DATA, nullptr}; |
| } |
| |
| // Duplicate the file descriptor so MemoryFd owns its own version. |
| int dupfd = dup(fd); |
| if (dupfd == -1) { |
| LOG(ERROR) << "Failed to dup the fd"; |
| // TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct |
| // error to return here? |
| return {ANEURALNETWORKS_UNEXPECTED_NULL, nullptr}; |
| } |
| |
| // Create a temporary native handle to own the dupfd. |
| native_handle_t* nativeHandle = native_handle_create(1, 3); |
| if (nativeHandle == nullptr) { |
| LOG(ERROR) << "Failed to create native_handle"; |
| // TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct |
| // error to return here? |
| return {ANEURALNETWORKS_UNEXPECTED_NULL, nullptr}; |
| } |
| nativeHandle->data[0] = dupfd; |
| nativeHandle->data[1] = prot; |
| const uint64_t bits = static_cast<uint64_t>(offset); |
| nativeHandle->data[2] = (int32_t)(uint32_t)(bits & 0xffffffff); |
| nativeHandle->data[3] = (int32_t)(uint32_t)(bits >> 32); |
| |
| // Create a hidl_handle which owns the native handle and fd so that we don't |
| // have to manually clean either the native handle or the fd. |
| hardware::hidl_handle hidlHandle; |
| hidlHandle.setTo(nativeHandle, /*shouldOwn=*/true); |
| |
| // Push the hidl_handle into a hidl_memory object. The hidl_memory object is |
| // responsible for cleaning the hidl_handle, the native handle, and the fd. |
| hidl_memory hidlMemory = hidl_memory("mmap_fd", std::move(hidlHandle), size); |
| |
| return {ANEURALNETWORKS_NO_ERROR, std::make_unique<MemoryFd>(std::move(hidlMemory))}; |
| } |
| |
| MemoryFd::MemoryFd(hidl_memory memory) : Memory(std::move(memory)) {} |
| |
| std::pair<int, std::unique_ptr<MemoryAHWB>> MemoryAHWB::create(const AHardwareBuffer& ahwb) { |
| AHardwareBuffer_Desc bufferDesc; |
| AHardwareBuffer_describe(&ahwb, &bufferDesc); |
| const native_handle_t* handle = AHardwareBuffer_getNativeHandle(&ahwb); |
| hidl_memory hidlMemory; |
| std::unique_ptr<MemoryValidatorBase> validator; |
| if (bufferDesc.format == AHARDWAREBUFFER_FORMAT_BLOB) { |
| hidlMemory = hidl_memory("hardware_buffer_blob", handle, bufferDesc.width); |
| validator = std::make_unique<SizedMemoryValidator>(bufferDesc.width); |
| } else { |
| // memory size is not used. |
| hidlMemory = hidl_memory("hardware_buffer", handle, 0); |
| validator = std::make_unique<AHardwareBufferNonBlobValidator>(); |
| } |
| auto memory = std::make_unique<MemoryAHWB>(std::move(hidlMemory), std::move(validator)); |
| return {ANEURALNETWORKS_NO_ERROR, std::move(memory)}; |
| }; |
| |
| std::pair<int, std::unique_ptr<MemoryRuntimeAHWB>> MemoryRuntimeAHWB::create(uint32_t size) { |
| AHardwareBuffer* ahwb = nullptr; |
| const auto usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN; |
| const AHardwareBuffer_Desc desc = { |
| .width = size, |
| .height = 1, |
| .layers = 1, |
| .format = AHARDWAREBUFFER_FORMAT_BLOB, |
| .usage = usage, |
| .stride = size, |
| }; |
| int err = AHardwareBuffer_allocate(&desc, &ahwb); |
| if (err != 0 || ahwb == nullptr) { |
| LOG(ERROR) << "Failed to allocate BLOB mode AHWB."; |
| return {ANEURALNETWORKS_OP_FAILED, nullptr}; |
| } |
| auto allocateGuard = base::make_scope_guard([&ahwb]() { AHardwareBuffer_release(ahwb); }); |
| |
| void* buffer = nullptr; |
| err = AHardwareBuffer_lock(ahwb, usage, -1, nullptr, &buffer); |
| if (err != 0 || buffer == nullptr) { |
| LOG(ERROR) << "Failed to lock BLOB mode AHWB."; |
| return {ANEURALNETWORKS_OP_FAILED, nullptr}; |
| } |
| auto lockGuard = base::make_scope_guard([&ahwb]() { AHardwareBuffer_unlock(ahwb, nullptr); }); |
| |
| const native_handle_t* handle = AHardwareBuffer_getNativeHandle(ahwb); |
| if (handle == nullptr) { |
| LOG(ERROR) << "Failed to retrieve the native handle from the AHWB."; |
| return {ANEURALNETWORKS_OP_FAILED, nullptr}; |
| } |
| |
| hidl_memory hidlMemory = hidl_memory("hardware_buffer_blob", handle, desc.width); |
| auto memory = std::make_unique<MemoryRuntimeAHWB>(std::move(hidlMemory), ahwb, |
| static_cast<uint8_t*>(buffer)); |
| allocateGuard.Disable(); |
| lockGuard.Disable(); |
| return {ANEURALNETWORKS_NO_ERROR, std::move(memory)}; |
| } |
| |
| MemoryRuntimeAHWB::MemoryRuntimeAHWB(hal::hidl_memory memory, AHardwareBuffer* ahwb, |
| uint8_t* buffer) |
| : Memory(std::move(memory)), mAhwb(ahwb), mBuffer(buffer) { |
| CHECK(mAhwb != nullptr); |
| CHECK(mBuffer != nullptr); |
| } |
| |
| MemoryRuntimeAHWB::~MemoryRuntimeAHWB() { |
| AHardwareBuffer_unlock(mAhwb, nullptr); |
| AHardwareBuffer_release(mAhwb); |
| } |
| |
| std::pair<int, std::unique_ptr<MemoryFromDevice>> MemoryFromDevice::create(sp<hal::IBuffer> buffer, |
| uint32_t token) { |
| if (buffer == nullptr) { |
| LOG(ERROR) << "nullptr IBuffer for device memory."; |
| return {ANEURALNETWORKS_BAD_DATA, nullptr}; |
| } |
| if (token <= 0) { |
| LOG(ERROR) << "Invalid token for device memory: " << token; |
| return {ANEURALNETWORKS_BAD_DATA, nullptr}; |
| } |
| return {ANEURALNETWORKS_NO_ERROR, std::make_unique<MemoryFromDevice>(std::move(buffer), token)}; |
| }; |
| |
| MemoryFromDevice::MemoryFromDevice(sp<hal::IBuffer> buffer, uint32_t token) |
| : Memory(std::move(buffer), token) {} |
| |
| } // namespace nn |
| } // namespace android |