blob: c44e5ecea481b6d6feabfc14c1faf8077debd2f2 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Operations.h"
#include "OperationsUtils.h"
#include "internal/optimized/optimized_ops.h"
namespace android {
namespace nn {
bool concatenationPrepare(const std::vector<Shape>& inputShapes,
int32_t axis,
Shape* output) {
int num_inputs = inputShapes.size();
OperandType input_type = inputShapes[0].type;
uint32_t num_dimensions = getNumberOfDimensions(inputShapes[0]);
DCHECK_GE(axis, 0);
DCHECK_LT(axis, (int32_t)num_dimensions);
int sum_axis = getSizeOfDimension(inputShapes[0], axis);
for (int i = 1; i < num_inputs; ++i) {
DCHECK_EQ(getNumberOfDimensions(inputShapes[i]), num_dimensions);
DCHECK_EQ((uint32_t)inputShapes[i].type, (uint32_t)inputShapes[0].type);
if (input_type == OperandType::TENSOR_QUANT8_ASYMM) {
DCHECK_EQ(inputShapes[0].offset, inputShapes[i].offset);
DCHECK_EQ(inputShapes[0].scale, inputShapes[i].scale);
}
for (int d = 0; d < (int32_t)num_dimensions; ++d) {
if (d == axis) {
sum_axis += getSizeOfDimension(inputShapes[i], axis);
} else {
DCHECK_EQ(getSizeOfDimension(inputShapes[0], d),
getSizeOfDimension(inputShapes[i], d));
}
}
}
output->type = input_type;
output->dimensions = inputShapes[0].dimensions;
output->dimensions[axis] = sum_axis;
if (input_type == OperandType::TENSOR_QUANT8_ASYMM) {
DCHECK_EQ(inputShapes[0].offset, output->offset);
DCHECK_EQ(inputShapes[0].scale, output->scale);
}
return true;
}
bool concatenationFloat32(const std::vector<const float*>& inputDataPtrs,
const std::vector<Shape>& inputShapes,
int32_t axis, int32_t activation,
float* outputData, const Shape& outputShape) {
int num_inputs = inputShapes.size();
std::vector<Dims<4>*> inputDimsPtr(num_inputs);
std::vector<Dims<4> > inputDims(num_inputs);
for (int i=0; i<num_inputs; i++) {
inputDims[i] = convertShapeToDims(inputShapes[i]);
inputDimsPtr[i] = &inputDims[i];
}
#define ANDROID_NN_CONCATENATION(activation) \
optimized_ops::Concatenation<FusedActivationFunctionType::activation, float>( \
getNumberOfDimensions(outputShape) - axis - 1, \
inputDataPtrs.data(), inputDimsPtr.data(), num_inputs, \
outputData, convertShapeToDims(outputShape))
ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_CONCATENATION)
#undef ANDROID_NN_CONCATENATION
return true;
}
bool concatenationQuant8(const std::vector<const uint8_t*>& inputDataPtrs,
const std::vector<Shape>& inputShapes,
int32_t axis, int32_t activation,
uint8_t* outputData, const Shape& outputShape) {
int num_inputs = inputShapes.size();
std::vector<Dims<4>*> inputDimsPtr(num_inputs);
std::vector<Dims<4> > inputDims(num_inputs);
for (int i=0; i<num_inputs; i++) {
inputDims[i] = convertShapeToDims(inputShapes[i]);
inputDimsPtr[i] = &inputDims[i];
}
#define ANDROID_NN_CONCATENATION(activation) \
optimized_ops::Concatenation<FusedActivationFunctionType::activation, uint8_t>( \
getNumberOfDimensions(outputShape) - axis - 1, \
inputDataPtrs.data(), inputDimsPtr.data(), num_inputs, \
outputData, convertShapeToDims(outputShape))
ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_CONCATENATION)
#undef ANDROID_NN_CONCATENATION
return true;
}
} // namespace nn
} // namespace android