| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| // Contains the implementation of the operations. |
| |
| #define LOG_TAG "Operations" |
| |
| #include "Operations.h" |
| #include "OperationsUtils.h" |
| |
| #include "internal/optimized/optimized_ops.h" |
| |
| namespace android { |
| namespace nn { |
| |
| bool addMulPrepare(const Shape& in1, const Shape& in2, Shape* out) { |
| if (getNumberOfDimensions(in1) > 4 || getNumberOfDimensions(in2) > 4) { |
| LOG(ERROR) << "Only supports upto 4D tensors."; |
| return false; |
| } |
| if (SameShape(in1, in2)) { |
| return SetShape(in1, out); |
| } else { |
| // BroadcastAdd needed |
| uint32_t numberOfDims1 = getNumberOfDimensions(in1); |
| uint32_t numberOfDims2 = getNumberOfDimensions(in2); |
| uint32_t maxDims = std::max(numberOfDims1, numberOfDims2); |
| out->dimensions = std::vector<uint32_t>(maxDims); |
| for (uint32_t i = 1; i <= maxDims; i++) { |
| uint32_t dim1 = 1; |
| if (i <= numberOfDims1) { |
| dim1 = getSizeOfDimension(in1, numberOfDims1 - i); |
| } |
| uint32_t dim2 = 1; |
| if (i <= numberOfDims2) { |
| dim2 = getSizeOfDimension(in2, numberOfDims2 - i); |
| } |
| if (dim1 != dim2 && dim1 != 1 && dim2 != 1) { |
| LOG(ERROR) << "Dimensions mismatch for BroadcastAdd"; |
| return false; |
| } |
| out->dimensions[maxDims - i] = std::max(dim1, dim2); |
| } |
| } |
| return true; |
| } |
| |
| bool addFloat32(const float* in1, const Shape& shape1, |
| const float* in2, const Shape& shape2, |
| int32_t activation, |
| float* out, const Shape& shapeOut) { |
| bool needBroadcast = !SameShape(shape1, shape2); |
| |
| #define ANDROID_NN_NORMAL_ADD(activation) \ |
| optimized_ops::Add<FusedActivationFunctionType::activation>( \ |
| in1, convertShapeToDims(shape1), \ |
| in2, convertShapeToDims(shape2), \ |
| out, convertShapeToDims(shapeOut)) |
| |
| #define ANDROID_NN_BROADCAST_ADD(activation) \ |
| optimized_ops::BroadcastAdd<FusedActivationFunctionType::activation>( \ |
| in1, convertShapeToDims(shape1), \ |
| in2, convertShapeToDims(shape2), \ |
| out, convertShapeToDims(shapeOut)) |
| |
| #define ANDROID_NN_ADD_DISPATCH |
| |
| if (needBroadcast) { |
| ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_BROADCAST_ADD) |
| } else { |
| ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_NORMAL_ADD) |
| } |
| |
| #undef ANDROID_NN_ADD |
| #undef ANDROID_NN_BROADCAST_ADD |
| return true; |
| } |
| |
| bool mulFloat32(const float* in1, const Shape& shape1, |
| const float* in2, const Shape& shape2, |
| int32_t activation, |
| float* out, const Shape& shapeOut) { |
| bool needBroadcast = !SameShape(shape1, shape2); |
| |
| #define ANDROID_NN_NORMAL_MUL(activation) \ |
| optimized_ops::Mul<FusedActivationFunctionType::activation>( \ |
| in1, convertShapeToDims(shape1), \ |
| in2, convertShapeToDims(shape2), \ |
| out, convertShapeToDims(shapeOut)) |
| |
| #define ANDROID_NN_BROADCAST_MUL(activation) \ |
| optimized_ops::BroadcastMul<FusedActivationFunctionType::activation>( \ |
| in1, convertShapeToDims(shape1), \ |
| in2, convertShapeToDims(shape2), \ |
| out, convertShapeToDims(shapeOut)) |
| |
| if (needBroadcast) { |
| ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_BROADCAST_MUL) |
| } else { |
| ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_NORMAL_MUL) |
| } |
| |
| #undef ANDROID_NN_MUL |
| #undef ANDROID_NN_BROADCAST_MUL |
| return true; |
| } |
| |
| bool floorPrepare(const Shape& input, Shape* output) { |
| return SetShape(input, output); |
| } |
| |
| bool floorFloat32(const float* inputData, |
| float* outputData, |
| const Shape& shape) { |
| Dims<4> dim = convertShapeToDims(shape); |
| optimized_ops::Floor(inputData, dim, outputData, dim); |
| return true; |
| } |
| |
| bool dequantizePrepare(const Shape& input, Shape* output) { |
| if (input.type != OperandType::TENSOR_QUANT8_ASYMM || |
| output->type != OperandType::TENSOR_FLOAT32) { |
| LOG(ERROR) << "bad input / output operand type."; |
| return false; |
| } |
| return SetShape(input, output); |
| } |
| |
| bool dequantizeQuant8ToFloat32(const uint8_t* inputData, |
| float* outputData, |
| const Shape& shape) { |
| Dims<4> dim = convertShapeToDims(shape); |
| optimized_ops::Dequantize(inputData, dim, |
| shape.offset, shape.scale, |
| outputData, dim); |
| return true; |
| } |
| |
| } // namespace nn |
| } // namespace android |