blob: c23c34a582dcc031937df1d08adffd84f61bedc2 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Contains the implementation of the operations.
#define LOG_TAG "Operations"
#include "Operations.h"
#include "OperationsUtils.h"
#include "internal/optimized/optimized_ops.h"
namespace android {
namespace nn {
bool addMulPrepare(const Shape& in1, const Shape& in2, Shape* out) {
if (getNumberOfDimensions(in1) > 4 || getNumberOfDimensions(in2) > 4) {
LOG(ERROR) << "Only supports upto 4D tensors.";
return false;
}
if (SameShape(in1, in2)) {
return SetShape(in1, out);
} else {
// BroadcastAdd needed
uint32_t numberOfDims1 = getNumberOfDimensions(in1);
uint32_t numberOfDims2 = getNumberOfDimensions(in2);
uint32_t maxDims = std::max(numberOfDims1, numberOfDims2);
out->dimensions = std::vector<uint32_t>(maxDims);
for (uint32_t i = 1; i <= maxDims; i++) {
uint32_t dim1 = 1;
if (i <= numberOfDims1) {
dim1 = getSizeOfDimension(in1, numberOfDims1 - i);
}
uint32_t dim2 = 1;
if (i <= numberOfDims2) {
dim2 = getSizeOfDimension(in2, numberOfDims2 - i);
}
if (dim1 != dim2 && dim1 != 1 && dim2 != 1) {
LOG(ERROR) << "Dimensions mismatch for BroadcastAdd";
return false;
}
out->dimensions[maxDims - i] = std::max(dim1, dim2);
}
}
return true;
}
bool addFloat32(const float* in1, const Shape& shape1,
const float* in2, const Shape& shape2,
int32_t activation,
float* out, const Shape& shapeOut) {
bool needBroadcast = !SameShape(shape1, shape2);
#define ANDROID_NN_NORMAL_ADD(activation) \
optimized_ops::Add<FusedActivationFunctionType::activation>( \
in1, convertShapeToDims(shape1), \
in2, convertShapeToDims(shape2), \
out, convertShapeToDims(shapeOut))
#define ANDROID_NN_BROADCAST_ADD(activation) \
optimized_ops::BroadcastAdd<FusedActivationFunctionType::activation>( \
in1, convertShapeToDims(shape1), \
in2, convertShapeToDims(shape2), \
out, convertShapeToDims(shapeOut))
#define ANDROID_NN_ADD_DISPATCH
if (needBroadcast) {
ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_BROADCAST_ADD)
} else {
ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_NORMAL_ADD)
}
#undef ANDROID_NN_ADD
#undef ANDROID_NN_BROADCAST_ADD
return true;
}
bool mulFloat32(const float* in1, const Shape& shape1,
const float* in2, const Shape& shape2,
int32_t activation,
float* out, const Shape& shapeOut) {
bool needBroadcast = !SameShape(shape1, shape2);
#define ANDROID_NN_NORMAL_MUL(activation) \
optimized_ops::Mul<FusedActivationFunctionType::activation>( \
in1, convertShapeToDims(shape1), \
in2, convertShapeToDims(shape2), \
out, convertShapeToDims(shapeOut))
#define ANDROID_NN_BROADCAST_MUL(activation) \
optimized_ops::BroadcastMul<FusedActivationFunctionType::activation>( \
in1, convertShapeToDims(shape1), \
in2, convertShapeToDims(shape2), \
out, convertShapeToDims(shapeOut))
if (needBroadcast) {
ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_BROADCAST_MUL)
} else {
ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_NORMAL_MUL)
}
#undef ANDROID_NN_MUL
#undef ANDROID_NN_BROADCAST_MUL
return true;
}
bool floorPrepare(const Shape& input, Shape* output) {
return SetShape(input, output);
}
bool floorFloat32(const float* inputData,
float* outputData,
const Shape& shape) {
Dims<4> dim = convertShapeToDims(shape);
optimized_ops::Floor(inputData, dim, outputData, dim);
return true;
}
bool dequantizePrepare(const Shape& input, Shape* output) {
if (input.type != OperandType::TENSOR_QUANT8_ASYMM ||
output->type != OperandType::TENSOR_FLOAT32) {
LOG(ERROR) << "bad input / output operand type.";
return false;
}
return SetShape(input, output);
}
bool dequantizeQuant8ToFloat32(const uint8_t* inputData,
float* outputData,
const Shape& shape) {
Dims<4> dim = convertShapeToDims(shape);
optimized_ops::Dequantize(inputData, dim,
shape.offset, shape.scale,
outputData, dim);
return true;
}
} // namespace nn
} // namespace android