| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "ExecutionBurstServer" |
| |
| #include "ExecutionBurstServer.h" |
| |
| #include <android-base/logging.h> |
| |
| #include <algorithm> |
| #include <cstring> |
| #include <limits> |
| #include <map> |
| #include <memory> |
| #include <thread> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| #include "HalInterfaces.h" |
| #include "Tracing.h" |
| #include "Utils.h" |
| |
| namespace android::nn { |
| namespace { |
| |
| using hardware::MQDescriptorSync; |
| using V1_2::FmqRequestDatum; |
| using V1_2::FmqResultDatum; |
| using V1_2::IBurstCallback; |
| using V1_2::IBurstContext; |
| |
| constexpr V1_2::Timing kNoTiming = {std::numeric_limits<uint64_t>::max(), |
| std::numeric_limits<uint64_t>::max()}; |
| |
| // DefaultBurstExecutorWithCache adapts an IPreparedModel so that it can be |
| // used as an IBurstExecutorWithCache. Specifically, the cache simply stores the |
| // hidl_memory object, and the execution forwards calls to the provided |
| // IPreparedModel's "executeSynchronously" method. With this class, hidl_memory |
| // must be mapped and unmapped for each execution. |
| class DefaultBurstExecutorWithCache : public ExecutionBurstServer::IBurstExecutorWithCache { |
| public: |
| DefaultBurstExecutorWithCache(V1_2::IPreparedModel* preparedModel) |
| : mpPreparedModel(preparedModel) {} |
| |
| bool isCacheEntryPresent(int32_t slot) const override { |
| const auto it = mMemoryCache.find(slot); |
| return (it != mMemoryCache.end()) && it->second.valid(); |
| } |
| |
| void addCacheEntry(const hardware::hidl_memory& memory, int32_t slot) override { |
| mMemoryCache[slot] = memory; |
| } |
| |
| void removeCacheEntry(int32_t slot) override { mMemoryCache.erase(slot); } |
| |
| std::tuple<V1_0::ErrorStatus, hardware::hidl_vec<V1_2::OutputShape>, V1_2::Timing> execute( |
| const V1_0::Request& request, const std::vector<int32_t>& slots, |
| V1_2::MeasureTiming measure) override { |
| // convert slots to pools |
| hardware::hidl_vec<hardware::hidl_memory> pools(slots.size()); |
| std::transform(slots.begin(), slots.end(), pools.begin(), |
| [this](int32_t slot) { return mMemoryCache[slot]; }); |
| |
| // create full request |
| V1_0::Request fullRequest = request; |
| fullRequest.pools = std::move(pools); |
| |
| // setup execution |
| V1_0::ErrorStatus returnedStatus = V1_0::ErrorStatus::GENERAL_FAILURE; |
| hardware::hidl_vec<V1_2::OutputShape> returnedOutputShapes; |
| V1_2::Timing returnedTiming; |
| auto cb = [&returnedStatus, &returnedOutputShapes, &returnedTiming]( |
| V1_0::ErrorStatus status, |
| const hardware::hidl_vec<V1_2::OutputShape>& outputShapes, |
| const V1_2::Timing& timing) { |
| returnedStatus = status; |
| returnedOutputShapes = outputShapes; |
| returnedTiming = timing; |
| }; |
| |
| // execute |
| const hardware::Return<void> ret = |
| mpPreparedModel->executeSynchronously(fullRequest, measure, cb); |
| if (!ret.isOk() || returnedStatus != V1_0::ErrorStatus::NONE) { |
| LOG(ERROR) << "IPreparedModelAdapter::execute -- Error executing"; |
| return {returnedStatus, std::move(returnedOutputShapes), kNoTiming}; |
| } |
| |
| return std::make_tuple(returnedStatus, std::move(returnedOutputShapes), returnedTiming); |
| } |
| |
| private: |
| V1_2::IPreparedModel* const mpPreparedModel; |
| std::map<int32_t, hardware::hidl_memory> mMemoryCache; |
| }; |
| |
| } // anonymous namespace |
| |
| // serialize result |
| std::vector<FmqResultDatum> serialize(V1_0::ErrorStatus errorStatus, |
| const std::vector<V1_2::OutputShape>& outputShapes, |
| V1_2::Timing timing) { |
| // count how many elements need to be sent for a request |
| size_t count = 2 + outputShapes.size(); |
| for (const auto& outputShape : outputShapes) { |
| count += outputShape.dimensions.size(); |
| } |
| |
| // create buffer to temporarily store elements |
| std::vector<FmqResultDatum> data; |
| data.reserve(count); |
| |
| // package packetInfo |
| { |
| FmqResultDatum datum; |
| datum.packetInformation({/*.packetSize=*/static_cast<uint32_t>(count), |
| /*.errorStatus=*/errorStatus, |
| /*.numberOfOperands=*/static_cast<uint32_t>(outputShapes.size())}); |
| data.push_back(datum); |
| } |
| |
| // package output shape data |
| for (const auto& operand : outputShapes) { |
| // package operand information |
| FmqResultDatum::OperandInformation info{}; |
| info.isSufficient = operand.isSufficient; |
| info.numberOfDimensions = static_cast<uint32_t>(operand.dimensions.size()); |
| |
| FmqResultDatum datum; |
| datum.operandInformation(info); |
| data.push_back(datum); |
| |
| // package operand dimensions |
| for (uint32_t dimension : operand.dimensions) { |
| FmqResultDatum datum; |
| datum.operandDimensionValue(dimension); |
| data.push_back(datum); |
| } |
| } |
| |
| // package executionTiming |
| { |
| FmqResultDatum datum; |
| datum.executionTiming(timing); |
| data.push_back(datum); |
| } |
| |
| // return result |
| return data; |
| } |
| |
| // deserialize request |
| std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>> deserialize( |
| const std::vector<FmqRequestDatum>& data) { |
| using discriminator = FmqRequestDatum::hidl_discriminator; |
| |
| size_t index = 0; |
| |
| // validate packet information |
| if (index >= data.size() || |
| data.at(index).getDiscriminator() != discriminator::packetInformation) { |
| LOG(ERROR) << "FMQ Request packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage packet information |
| const FmqRequestDatum::PacketInformation& packetInfo = data.at(index).packetInformation(); |
| index++; |
| const uint32_t packetSize = packetInfo.packetSize; |
| const uint32_t numberOfInputOperands = packetInfo.numberOfInputOperands; |
| const uint32_t numberOfOutputOperands = packetInfo.numberOfOutputOperands; |
| const uint32_t numberOfPools = packetInfo.numberOfPools; |
| |
| // verify packet size |
| if (data.size() != packetSize) { |
| LOG(ERROR) << "FMQ Request packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage input operands |
| std::vector<V1_0::RequestArgument> inputs; |
| inputs.reserve(numberOfInputOperands); |
| for (size_t operand = 0; operand < numberOfInputOperands; ++operand) { |
| // validate input operand information |
| if (index >= data.size() || |
| data.at(index).getDiscriminator() != discriminator::inputOperandInformation) { |
| LOG(ERROR) << "FMQ Request packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage operand information |
| const FmqRequestDatum::OperandInformation& operandInfo = |
| data.at(index).inputOperandInformation(); |
| index++; |
| const bool hasNoValue = operandInfo.hasNoValue; |
| const V1_0::DataLocation location = operandInfo.location; |
| const uint32_t numberOfDimensions = operandInfo.numberOfDimensions; |
| |
| // unpackage operand dimensions |
| std::vector<uint32_t> dimensions; |
| dimensions.reserve(numberOfDimensions); |
| for (size_t i = 0; i < numberOfDimensions; ++i) { |
| // validate dimension |
| if (index >= data.size() || |
| data.at(index).getDiscriminator() != discriminator::inputOperandDimensionValue) { |
| LOG(ERROR) << "FMQ Request packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage dimension |
| const uint32_t dimension = data.at(index).inputOperandDimensionValue(); |
| index++; |
| |
| // store result |
| dimensions.push_back(dimension); |
| } |
| |
| // store result |
| inputs.push_back( |
| {/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions}); |
| } |
| |
| // unpackage output operands |
| std::vector<V1_0::RequestArgument> outputs; |
| outputs.reserve(numberOfOutputOperands); |
| for (size_t operand = 0; operand < numberOfOutputOperands; ++operand) { |
| // validate output operand information |
| if (index >= data.size() || |
| data.at(index).getDiscriminator() != discriminator::outputOperandInformation) { |
| LOG(ERROR) << "FMQ Request packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage operand information |
| const FmqRequestDatum::OperandInformation& operandInfo = |
| data.at(index).outputOperandInformation(); |
| index++; |
| const bool hasNoValue = operandInfo.hasNoValue; |
| const V1_0::DataLocation location = operandInfo.location; |
| const uint32_t numberOfDimensions = operandInfo.numberOfDimensions; |
| |
| // unpackage operand dimensions |
| std::vector<uint32_t> dimensions; |
| dimensions.reserve(numberOfDimensions); |
| for (size_t i = 0; i < numberOfDimensions; ++i) { |
| // validate dimension |
| if (index >= data.size() || |
| data.at(index).getDiscriminator() != discriminator::outputOperandDimensionValue) { |
| LOG(ERROR) << "FMQ Request packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage dimension |
| const uint32_t dimension = data.at(index).outputOperandDimensionValue(); |
| index++; |
| |
| // store result |
| dimensions.push_back(dimension); |
| } |
| |
| // store result |
| outputs.push_back( |
| {/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions}); |
| } |
| |
| // unpackage pools |
| std::vector<int32_t> slots; |
| slots.reserve(numberOfPools); |
| for (size_t pool = 0; pool < numberOfPools; ++pool) { |
| // validate input operand information |
| if (index >= data.size() || |
| data.at(index).getDiscriminator() != discriminator::poolIdentifier) { |
| LOG(ERROR) << "FMQ Request packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage operand information |
| const int32_t poolId = data.at(index).poolIdentifier(); |
| index++; |
| |
| // store result |
| slots.push_back(poolId); |
| } |
| |
| // validate measureTiming |
| if (index >= data.size() || data.at(index).getDiscriminator() != discriminator::measureTiming) { |
| LOG(ERROR) << "FMQ Request packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage measureTiming |
| const V1_2::MeasureTiming measure = data.at(index).measureTiming(); |
| index++; |
| |
| // validate packet information |
| if (index != packetSize) { |
| LOG(ERROR) << "FMQ Request packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // return request |
| V1_0::Request request = {/*.inputs=*/inputs, /*.outputs=*/outputs, /*.pools=*/{}}; |
| return std::make_tuple(std::move(request), std::move(slots), measure); |
| } |
| |
| // RequestChannelReceiver methods |
| |
| std::unique_ptr<RequestChannelReceiver> RequestChannelReceiver::create( |
| const FmqRequestDescriptor& requestChannel, std::chrono::microseconds pollingTimeWindow) { |
| std::unique_ptr<FmqRequestChannel> fmqRequestChannel = |
| std::make_unique<FmqRequestChannel>(requestChannel); |
| |
| if (!fmqRequestChannel->isValid()) { |
| LOG(ERROR) << "Unable to create RequestChannelReceiver"; |
| return nullptr; |
| } |
| if (fmqRequestChannel->getEventFlagWord() == nullptr) { |
| LOG(ERROR) |
| << "RequestChannelReceiver::create was passed an MQDescriptor without an EventFlag"; |
| return nullptr; |
| } |
| |
| return std::make_unique<RequestChannelReceiver>(std::move(fmqRequestChannel), |
| pollingTimeWindow); |
| } |
| |
| RequestChannelReceiver::RequestChannelReceiver(std::unique_ptr<FmqRequestChannel> fmqRequestChannel, |
| std::chrono::microseconds pollingTimeWindow) |
| : mFmqRequestChannel(std::move(fmqRequestChannel)), kPollingTimeWindow(pollingTimeWindow) {} |
| |
| std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>> |
| RequestChannelReceiver::getBlocking() { |
| const auto packet = getPacketBlocking(); |
| if (!packet) { |
| return std::nullopt; |
| } |
| |
| return deserialize(*packet); |
| } |
| |
| void RequestChannelReceiver::invalidate() { |
| mTeardown = true; |
| |
| // force unblock |
| // ExecutionBurstServer is by default waiting on a request packet. If the |
| // client process destroys its burst object, the server may still be waiting |
| // on the futex. This force unblock wakes up any thread waiting on the |
| // futex. |
| // TODO: look for a different/better way to signal/notify the futex to wake |
| // up any thread waiting on it |
| FmqRequestDatum datum; |
| datum.packetInformation({/*.packetSize=*/0, /*.numberOfInputOperands=*/0, |
| /*.numberOfOutputOperands=*/0, /*.numberOfPools=*/0}); |
| mFmqRequestChannel->writeBlocking(&datum, 1); |
| } |
| |
| std::optional<std::vector<FmqRequestDatum>> RequestChannelReceiver::getPacketBlocking() { |
| |
| if (mTeardown) { |
| return std::nullopt; |
| } |
| |
| // First spend time polling if results are available in FMQ instead of |
| // waiting on the futex. Polling is more responsive (yielding lower |
| // latencies), but can take up more power, so only poll for a limited period |
| // of time. |
| |
| auto& getCurrentTime = std::chrono::high_resolution_clock::now; |
| const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow; |
| |
| while (getCurrentTime() < timeToStopPolling) { |
| // if class is being torn down, immediately return |
| if (mTeardown.load(std::memory_order_relaxed)) { |
| return std::nullopt; |
| } |
| |
| // Check if data is available. If it is, immediately retrieve it and |
| // return. |
| const size_t available = mFmqRequestChannel->availableToRead(); |
| if (available > 0) { |
| // This is the first point when we know an execution is occurring, |
| // so begin to collect systraces. Note that a similar systrace does |
| // not exist at the corresponding point in |
| // ResultChannelReceiver::getPacketBlocking because the execution is |
| // already in flight. |
| NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, |
| "ExecutionBurstServer getting packet"); |
| std::vector<FmqRequestDatum> packet(available); |
| const bool success = mFmqRequestChannel->read(packet.data(), available); |
| if (!success) { |
| LOG(ERROR) << "Error receiving packet"; |
| return std::nullopt; |
| } |
| return std::make_optional(std::move(packet)); |
| } |
| |
| std::this_thread::yield(); |
| } |
| |
| // If we get to this point, we either stopped polling because it was taking |
| // too long or polling was not allowed. Instead, perform a blocking call |
| // which uses a futex to save power. |
| |
| // wait for request packet and read first element of request packet |
| FmqRequestDatum datum; |
| bool success = mFmqRequestChannel->readBlocking(&datum, 1); |
| |
| // This is the first point when we know an execution is occurring, so begin |
| // to collect systraces. Note that a similar systrace does not exist at the |
| // corresponding point in ResultChannelReceiver::getPacketBlocking because |
| // the execution is already in flight. |
| NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstServer getting packet"); |
| |
| // retrieve remaining elements |
| // NOTE: all of the data is already available at this point, so there's no |
| // need to do a blocking wait to wait for more data. This is known because |
| // in FMQ, all writes are published (made available) atomically. Currently, |
| // the producer always publishes the entire packet in one function call, so |
| // if the first element of the packet is available, the remaining elements |
| // are also available. |
| const size_t count = mFmqRequestChannel->availableToRead(); |
| std::vector<FmqRequestDatum> packet(count + 1); |
| std::memcpy(&packet.front(), &datum, sizeof(datum)); |
| success &= mFmqRequestChannel->read(packet.data() + 1, count); |
| |
| // terminate loop |
| if (mTeardown) { |
| return std::nullopt; |
| } |
| |
| // ensure packet was successfully received |
| if (!success) { |
| LOG(ERROR) << "Error receiving packet"; |
| return std::nullopt; |
| } |
| |
| return std::make_optional(std::move(packet)); |
| } |
| |
| // ResultChannelSender methods |
| |
| std::unique_ptr<ResultChannelSender> ResultChannelSender::create( |
| const FmqResultDescriptor& resultChannel) { |
| std::unique_ptr<FmqResultChannel> fmqResultChannel = |
| std::make_unique<FmqResultChannel>(resultChannel); |
| |
| if (!fmqResultChannel->isValid()) { |
| LOG(ERROR) << "Unable to create RequestChannelSender"; |
| return nullptr; |
| } |
| if (fmqResultChannel->getEventFlagWord() == nullptr) { |
| LOG(ERROR) << "ResultChannelSender::create was passed an MQDescriptor without an EventFlag"; |
| return nullptr; |
| } |
| |
| return std::make_unique<ResultChannelSender>(std::move(fmqResultChannel)); |
| } |
| |
| ResultChannelSender::ResultChannelSender(std::unique_ptr<FmqResultChannel> fmqResultChannel) |
| : mFmqResultChannel(std::move(fmqResultChannel)) {} |
| |
| bool ResultChannelSender::send(V1_0::ErrorStatus errorStatus, |
| const std::vector<V1_2::OutputShape>& outputShapes, |
| V1_2::Timing timing) { |
| const std::vector<FmqResultDatum> serialized = serialize(errorStatus, outputShapes, timing); |
| return sendPacket(serialized); |
| } |
| |
| bool ResultChannelSender::sendPacket(const std::vector<FmqResultDatum>& packet) { |
| if (packet.size() > mFmqResultChannel->availableToWrite()) { |
| LOG(ERROR) |
| << "ResultChannelSender::sendPacket -- packet size exceeds size available in FMQ"; |
| const std::vector<FmqResultDatum> errorPacket = |
| serialize(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming); |
| |
| // Always send the packet with "blocking" because this signals the futex |
| // and unblocks the consumer if it is waiting on the futex. |
| return mFmqResultChannel->writeBlocking(errorPacket.data(), errorPacket.size()); |
| } |
| |
| // Always send the packet with "blocking" because this signals the futex and |
| // unblocks the consumer if it is waiting on the futex. |
| return mFmqResultChannel->writeBlocking(packet.data(), packet.size()); |
| } |
| |
| // ExecutionBurstServer methods |
| |
| sp<ExecutionBurstServer> ExecutionBurstServer::create( |
| const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel, |
| const MQDescriptorSync<FmqResultDatum>& resultChannel, |
| std::shared_ptr<IBurstExecutorWithCache> executorWithCache, |
| std::chrono::microseconds pollingTimeWindow) { |
| // check inputs |
| if (callback == nullptr || executorWithCache == nullptr) { |
| LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr"; |
| return nullptr; |
| } |
| |
| // create FMQ objects |
| std::unique_ptr<RequestChannelReceiver> requestChannelReceiver = |
| RequestChannelReceiver::create(requestChannel, pollingTimeWindow); |
| std::unique_ptr<ResultChannelSender> resultChannelSender = |
| ResultChannelSender::create(resultChannel); |
| |
| // check FMQ objects |
| if (!requestChannelReceiver || !resultChannelSender) { |
| LOG(ERROR) << "ExecutionBurstServer::create failed to create FastMessageQueue"; |
| return nullptr; |
| } |
| |
| // make and return context |
| return new ExecutionBurstServer(callback, std::move(requestChannelReceiver), |
| std::move(resultChannelSender), std::move(executorWithCache)); |
| } |
| |
| sp<ExecutionBurstServer> ExecutionBurstServer::create( |
| const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel, |
| const MQDescriptorSync<FmqResultDatum>& resultChannel, V1_2::IPreparedModel* preparedModel, |
| std::chrono::microseconds pollingTimeWindow) { |
| // check relevant input |
| if (preparedModel == nullptr) { |
| LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr"; |
| return nullptr; |
| } |
| |
| // adapt IPreparedModel to have caching |
| const std::shared_ptr<DefaultBurstExecutorWithCache> preparedModelAdapter = |
| std::make_shared<DefaultBurstExecutorWithCache>(preparedModel); |
| |
| // make and return context |
| return ExecutionBurstServer::create(callback, requestChannel, resultChannel, |
| preparedModelAdapter, pollingTimeWindow); |
| } |
| |
| ExecutionBurstServer::ExecutionBurstServer( |
| const sp<IBurstCallback>& callback, std::unique_ptr<RequestChannelReceiver> requestChannel, |
| std::unique_ptr<ResultChannelSender> resultChannel, |
| std::shared_ptr<IBurstExecutorWithCache> executorWithCache) |
| : mCallback(callback), |
| mRequestChannelReceiver(std::move(requestChannel)), |
| mResultChannelSender(std::move(resultChannel)), |
| mExecutorWithCache(std::move(executorWithCache)) { |
| // TODO: highly document the threading behavior of this class |
| mWorker = std::thread([this] { task(); }); |
| } |
| |
| ExecutionBurstServer::~ExecutionBurstServer() { |
| // set teardown flag |
| mTeardown = true; |
| mRequestChannelReceiver->invalidate(); |
| |
| // wait for task thread to end |
| mWorker.join(); |
| } |
| |
| hardware::Return<void> ExecutionBurstServer::freeMemory(int32_t slot) { |
| std::lock_guard<std::mutex> hold(mMutex); |
| mExecutorWithCache->removeCacheEntry(slot); |
| return hardware::Void(); |
| } |
| |
| void ExecutionBurstServer::ensureCacheEntriesArePresentLocked(const std::vector<int32_t>& slots) { |
| const auto slotIsKnown = [this](int32_t slot) { |
| return mExecutorWithCache->isCacheEntryPresent(slot); |
| }; |
| |
| // find unique unknown slots |
| std::vector<int32_t> unknownSlots = slots; |
| auto unknownSlotsEnd = unknownSlots.end(); |
| std::sort(unknownSlots.begin(), unknownSlotsEnd); |
| unknownSlotsEnd = std::unique(unknownSlots.begin(), unknownSlotsEnd); |
| unknownSlotsEnd = std::remove_if(unknownSlots.begin(), unknownSlotsEnd, slotIsKnown); |
| unknownSlots.erase(unknownSlotsEnd, unknownSlots.end()); |
| |
| // quick-exit if all slots are known |
| if (unknownSlots.empty()) { |
| return; |
| } |
| |
| V1_0::ErrorStatus errorStatus = V1_0::ErrorStatus::GENERAL_FAILURE; |
| std::vector<hardware::hidl_memory> returnedMemories; |
| auto cb = [&errorStatus, &returnedMemories]( |
| V1_0::ErrorStatus status, |
| const hardware::hidl_vec<hardware::hidl_memory>& memories) { |
| errorStatus = status; |
| returnedMemories = memories; |
| }; |
| |
| const hardware::Return<void> ret = mCallback->getMemories(unknownSlots, cb); |
| |
| if (!ret.isOk() || errorStatus != V1_0::ErrorStatus::NONE || |
| returnedMemories.size() != unknownSlots.size()) { |
| LOG(ERROR) << "Error retrieving memories"; |
| return; |
| } |
| |
| // add memories to unknown slots |
| for (size_t i = 0; i < unknownSlots.size(); ++i) { |
| mExecutorWithCache->addCacheEntry(returnedMemories[i], unknownSlots[i]); |
| } |
| } |
| |
| void ExecutionBurstServer::task() { |
| // loop until the burst object is being destroyed |
| while (!mTeardown) { |
| // receive request |
| auto arguments = mRequestChannelReceiver->getBlocking(); |
| |
| // if the request packet was not properly received, return a generic |
| // error and skip the execution |
| // |
| // if the burst is being torn down, skip the execution exection so the |
| // "task" function can end |
| if (!arguments) { |
| if (!mTeardown) { |
| mResultChannelSender->send(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming); |
| } |
| continue; |
| } |
| |
| // otherwise begin tracing execution |
| NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, |
| "ExecutionBurstServer getting memory, executing, and returning results"); |
| |
| // unpack the arguments; types are Request, std::vector<int32_t>, and |
| // MeasureTiming, respectively |
| const auto [requestWithoutPools, slotsOfPools, measure] = std::move(*arguments); |
| |
| // ensure executor with cache has required memory |
| std::lock_guard<std::mutex> hold(mMutex); |
| ensureCacheEntriesArePresentLocked(slotsOfPools); |
| |
| // perform computation; types are ErrorStatus, hidl_vec<OutputShape>, |
| // and Timing, respectively |
| const auto [errorStatus, outputShapes, returnedTiming] = |
| mExecutorWithCache->execute(requestWithoutPools, slotsOfPools, measure); |
| |
| // return result |
| mResultChannelSender->send(errorStatus, outputShapes, returnedTiming); |
| } |
| } |
| |
| } // namespace android::nn |