| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "Operations" |
| |
| #include "Dequantize.h" |
| |
| #include "IndexedShapeWrapper.h" |
| #include "OperationResolver.h" |
| #include "OperationsExecutionUtils.h" |
| |
| namespace android { |
| namespace nn { |
| namespace dequantize { |
| namespace { |
| |
| template <typename InputType, typename OutputType> |
| bool compute(const InputType* inputData, const Shape& inputShape, OutputType* outputData) { |
| const int numElements = getNumberOfElements(inputShape); |
| const int32_t zeroPoint = inputShape.offset; |
| const float scale = inputShape.scale; |
| for (int i = 0; i < numElements; ++i) { |
| const int32_t value = inputData[i]; |
| // This dequantization formula also appears in Elementwise.cpp. |
| outputData[i] = static_cast<OutputType>(scale * (value - zeroPoint)); |
| } |
| return true; |
| } |
| |
| template <typename OutputType> |
| bool computePerChannel(const int8_t* inputData, const Shape& inputShape, OutputType* outputData) { |
| // First we calculate a stride which is the number of elements we need to |
| // skip to change an index along a dimension with different quantization |
| // scales. |
| const int channelDim = |
| std::get<Operand::SymmPerChannelQuantParams>(inputShape.extraParams).channelDim; |
| int stride = 1; |
| for (int i = getNumberOfDimensions(inputShape) - 1; i > channelDim; --i) { |
| stride *= getSizeOfDimension(inputShape, i); |
| } |
| |
| const int numElements = getNumberOfElements(inputShape); |
| const int32_t zeroPoint = inputShape.offset; |
| |
| for (int i = 0; i < numElements; ++i) { |
| // To get current index along the quantized dimension we calculate how |
| // many even |strides| we looped through and take this number modulo the |
| // size of the dimension (so that we don't have an overflow if the |
| // channelDim is not 0). |
| const int scaleIndex = (i / stride) % getSizeOfDimension(inputShape, channelDim); |
| const float scale = std::get<Operand::SymmPerChannelQuantParams>(inputShape.extraParams) |
| .scales[scaleIndex]; |
| const int32_t value = inputData[i]; |
| outputData[i] = static_cast<OutputType>(scale * (value - zeroPoint)); |
| } |
| return true; |
| } |
| |
| } // namespace |
| |
| bool prepare(IOperationExecutionContext* context) { |
| const Shape& input = context->getInputShape(kInputTensor); |
| NN_RET_CHECK_LE(getNumberOfDimensions(input), 4u); |
| Shape output = context->getOutputShape(kOutputTensor); |
| output.dimensions = input.dimensions; |
| return context->setOutputShape(kOutputTensor, output); |
| } |
| |
| bool execute(IOperationExecutionContext* context) { |
| // Bypass execution in the case of zero-sized input. |
| if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; |
| |
| const OperandType inputType = context->getInputType(kInputTensor); |
| const OperandType outputType = context->getOutputType(kOutputTensor); |
| |
| const Shape& inputShape = context->getInputShape(kInputTensor); |
| if (inputType == OperandType::TENSOR_QUANT8_ASYMM) { |
| const uint8_t* inputBuffer = context->getInputBuffer<uint8_t>(kInputTensor); |
| if (outputType == OperandType::TENSOR_FLOAT16) { |
| return compute(inputBuffer, inputShape, |
| context->getOutputBuffer<_Float16>(kOutputTensor)); |
| } else if (outputType == OperandType::TENSOR_FLOAT32) { |
| return compute(inputBuffer, inputShape, context->getOutputBuffer<float>(kOutputTensor)); |
| } |
| } else if (inputType == OperandType::TENSOR_QUANT8_SYMM) { |
| const int8_t* inputBuffer = context->getInputBuffer<int8_t>(kInputTensor); |
| if (outputType == OperandType::TENSOR_FLOAT16) { |
| return compute(inputBuffer, inputShape, |
| context->getOutputBuffer<_Float16>(kOutputTensor)); |
| } else if (outputType == OperandType::TENSOR_FLOAT32) { |
| return compute(inputBuffer, inputShape, context->getOutputBuffer<float>(kOutputTensor)); |
| } |
| } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| const int8_t* inputBuffer = context->getInputBuffer<int8_t>(kInputTensor); |
| if (outputType == OperandType::TENSOR_FLOAT16) { |
| return compute(inputBuffer, inputShape, |
| context->getOutputBuffer<_Float16>(kOutputTensor)); |
| } else if (outputType == OperandType::TENSOR_FLOAT32) { |
| return compute(inputBuffer, inputShape, context->getOutputBuffer<float>(kOutputTensor)); |
| } |
| } else if (inputType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) { |
| const int8_t* inputBuffer = context->getInputBuffer<int8_t>(kInputTensor); |
| if (outputType == OperandType::TENSOR_FLOAT16) { |
| return computePerChannel(inputBuffer, inputShape, |
| context->getOutputBuffer<_Float16>(kOutputTensor)); |
| } else if (outputType == OperandType::TENSOR_FLOAT32) { |
| return computePerChannel(inputBuffer, inputShape, |
| context->getOutputBuffer<float>(kOutputTensor)); |
| } |
| } |
| NN_RET_CHECK_FAIL() << "Unsupported tensor types combination for dequantize op. (input type: " |
| << inputType << " output type: " << outputType << ")"; |
| } |
| |
| } // namespace dequantize |
| |
| NN_REGISTER_OPERATION_DEFAULT_VALIDATION(DEQUANTIZE, dequantize::prepare, dequantize::execute, |
| .allowZeroSizedInput = true); |
| |
| } // namespace nn |
| } // namespace android |