| /* |
| * Copyright (C) 2018 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "Operations" |
| |
| #include "Elementwise.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <functional> |
| #include <limits> |
| |
| #include "OperationResolver.h" |
| #include "OperationsExecutionUtils.h" |
| #include "Tracing.h" |
| |
| namespace android { |
| namespace nn { |
| namespace elementwise { |
| namespace { |
| |
| template <typename IntermediateType, typename T> |
| inline bool compute(const std::function<IntermediateType(IntermediateType)>& func, const T* input, |
| const Shape& shape, T* output) { |
| const auto size = getNumberOfElements(shape); |
| for (uint32_t i = 0; i < size; ++i) { |
| output[i] = static_cast<T>(func(static_cast<IntermediateType>(input[i]))); |
| } |
| return true; |
| } |
| |
| template <typename IntermediateType, typename T> |
| inline bool compute(IntermediateType func(IntermediateType), const T* input, const Shape& shape, |
| T* output) { |
| return compute(std::function<IntermediateType(IntermediateType)>(func), input, shape, output); |
| } |
| |
| template <typename IntermediateType, typename T> |
| auto makeQuantized(const std::function<IntermediateType(IntermediateType)>& func, float inScale, |
| T inZeroPoint, float outScale, T outZeroPoint) { |
| return [func, inScale, inZeroPoint, outScale, outZeroPoint](T val) -> T { |
| // For dequantization formula, see Dequantize.cpp. |
| using WideT = int32_t; |
| static_assert(sizeof(T) < sizeof(WideT)); |
| IntermediateType dequantizedVal = |
| (static_cast<WideT>(val) - static_cast<WideT>(inZeroPoint)) * inScale; |
| |
| IntermediateType res = func(dequantizedVal); |
| |
| // For quantization formula, see Quantize.cpp. |
| T quantizedRes = static_cast<T>(std::max<float>( |
| static_cast<IntermediateType>(std::numeric_limits<T>::min()), |
| std::min<float>(static_cast<IntermediateType>(std::numeric_limits<T>::max()), |
| outZeroPoint + std::round(res / outScale)))); |
| |
| return quantizedRes; |
| }; |
| } |
| |
| bool execute(IOperationExecutionContext* context, float func(float)) { |
| switch (context->getInputType(kInputTensor)) { |
| case OperandType::TENSOR_FLOAT16: |
| return compute<float, _Float16>(func, context->getInputBuffer<_Float16>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getOutputBuffer<_Float16>(kOutputTensor)); |
| case OperandType::TENSOR_FLOAT32: |
| return compute<float, float>(func, context->getInputBuffer<float>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getOutputBuffer<float>(kOutputTensor)); |
| default: |
| NN_RET_CHECK_FAIL() << "Unsupported tensor type for elementwise operation"; |
| } |
| } |
| |
| } // namespace |
| |
| bool executeAbs(IOperationExecutionContext* context) { |
| switch (context->getInputType(kInputTensor)) { |
| case OperandType::TENSOR_FLOAT16: |
| return compute<float, _Float16>(std::abs, |
| context->getInputBuffer<_Float16>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getOutputBuffer<_Float16>(kOutputTensor)); |
| case OperandType::TENSOR_FLOAT32: |
| return compute<float, float>(std::abs, context->getInputBuffer<float>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getOutputBuffer<float>(kOutputTensor)); |
| case OperandType::TENSOR_INT32: |
| return compute<int32_t, int32_t>(std::abs, |
| context->getInputBuffer<int32_t>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getOutputBuffer<int32_t>(kOutputTensor)); |
| default: |
| NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation ABS"; |
| } |
| } |
| |
| bool executeRsqrt(IOperationExecutionContext* context) { |
| const std::function<float(float)> frsqrt = [](float x) { return 1.f / std::sqrt(x); }; |
| const auto tensorType = context->getInputType(kInputTensor); |
| switch (tensorType) { |
| case OperandType::TENSOR_FLOAT16: |
| return compute<float, _Float16>(frsqrt, context->getInputBuffer<_Float16>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getOutputBuffer<_Float16>(kOutputTensor)); |
| case OperandType::TENSOR_FLOAT32: |
| return compute<float, float>(frsqrt, context->getInputBuffer<float>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getOutputBuffer<float>(kOutputTensor)); |
| case OperandType::TENSOR_QUANT8_ASYMM: { |
| const Shape inShape = context->getInputShape(kInputTensor); |
| const Shape outShape = context->getOutputShape(kOutputTensor); |
| return compute<uint8_t, uint8_t>( |
| makeQuantized(frsqrt, inShape.scale, static_cast<uint8_t>(inShape.offset), |
| outShape.scale, static_cast<uint8_t>(outShape.offset)), |
| context->getInputBuffer<uint8_t>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getOutputBuffer<uint8_t>(kOutputTensor)); |
| } |
| case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: { |
| const Shape inShape = context->getInputShape(kInputTensor); |
| const Shape outShape = context->getOutputShape(kOutputTensor); |
| return compute<int8_t, int8_t>( |
| makeQuantized(frsqrt, inShape.scale, static_cast<int8_t>(inShape.offset), |
| outShape.scale, static_cast<int8_t>(outShape.offset)), |
| context->getInputBuffer<int8_t>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getOutputBuffer<int8_t>(kOutputTensor)); |
| } |
| default: |
| NN_RET_CHECK_FAIL() << "Unsupported tensor type " << tensorType |
| << " for operation RSQRT"; |
| } |
| } |
| |
| bool prepare(IOperationExecutionContext* context) { |
| Shape input = context->getInputShape(kInputTensor); |
| Shape output = context->getOutputShape(kOutputTensor); |
| NN_RET_CHECK(SetShape(input, &output)); |
| return context->setOutputShape(kOutputTensor, output); |
| } |
| |
| bool prepareFloor(IOperationExecutionContext* context) { |
| Shape input = context->getInputShape(kInputTensor); |
| Shape output = context->getOutputShape(kOutputTensor); |
| NN_RET_CHECK_LE(getNumberOfDimensions(input), 4u); |
| NN_RET_CHECK(SetShape(input, &output)); |
| return context->setOutputShape(kOutputTensor, output); |
| } |
| |
| bool executeExp(IOperationExecutionContext* context) { |
| return execute(context, std::exp); |
| } |
| |
| bool executeFloor(IOperationExecutionContext* context) { |
| return execute(context, std::floor); |
| } |
| |
| bool executeLog(IOperationExecutionContext* context) { |
| return execute(context, std::log); |
| } |
| |
| bool executeSin(IOperationExecutionContext* context) { |
| return execute(context, std::sin); |
| } |
| |
| bool executeSqrt(IOperationExecutionContext* context) { |
| return execute(context, std::sqrt); |
| } |
| |
| } // namespace elementwise |
| |
| NN_REGISTER_OPERATION_DEFAULT_VALIDATION(ABS, elementwise::prepare, elementwise::executeAbs); |
| NN_REGISTER_OPERATION_DEFAULT_VALIDATION(EXP, elementwise::prepare, elementwise::executeExp); |
| NN_REGISTER_OPERATION_DEFAULT_VALIDATION(FLOOR, elementwise::prepareFloor, |
| elementwise::executeFloor); |
| NN_REGISTER_OPERATION_DEFAULT_VALIDATION(LOG, elementwise::prepare, elementwise::executeLog); |
| NN_REGISTER_OPERATION_DEFAULT_VALIDATION(RSQRT, elementwise::prepare, elementwise::executeRsqrt); |
| NN_REGISTER_OPERATION_DEFAULT_VALIDATION(SIN, elementwise::prepare, elementwise::executeSin); |
| NN_REGISTER_OPERATION_DEFAULT_VALIDATION(SQRT, elementwise::prepare, elementwise::executeSqrt); |
| |
| } // namespace nn |
| } // namespace android |