blob: e3bc7ee9eb8360df36d5ea2a47e0e3778f106864 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Operations"
#include "Elementwise.h"
#include <algorithm>
#include <cmath>
#include <functional>
#include <limits>
#include "OperationResolver.h"
#include "OperationsExecutionUtils.h"
#include "Tracing.h"
namespace android {
namespace nn {
namespace elementwise {
namespace {
template <typename IntermediateType, typename T>
inline bool compute(const std::function<IntermediateType(IntermediateType)>& func, const T* input,
const Shape& shape, T* output) {
const auto size = getNumberOfElements(shape);
for (uint32_t i = 0; i < size; ++i) {
output[i] = static_cast<T>(func(static_cast<IntermediateType>(input[i])));
}
return true;
}
template <typename IntermediateType, typename T>
inline bool compute(IntermediateType func(IntermediateType), const T* input, const Shape& shape,
T* output) {
return compute(std::function<IntermediateType(IntermediateType)>(func), input, shape, output);
}
template <typename IntermediateType, typename T>
auto makeQuantized(const std::function<IntermediateType(IntermediateType)>& func, float inScale,
T inZeroPoint, float outScale, T outZeroPoint) {
return [func, inScale, inZeroPoint, outScale, outZeroPoint](T val) -> T {
// For dequantization formula, see Dequantize.cpp.
using WideT = int32_t;
static_assert(sizeof(T) < sizeof(WideT));
IntermediateType dequantizedVal =
(static_cast<WideT>(val) - static_cast<WideT>(inZeroPoint)) * inScale;
IntermediateType res = func(dequantizedVal);
// For quantization formula, see Quantize.cpp.
T quantizedRes = static_cast<T>(std::max<float>(
static_cast<IntermediateType>(std::numeric_limits<T>::min()),
std::min<float>(static_cast<IntermediateType>(std::numeric_limits<T>::max()),
outZeroPoint + std::round(res / outScale))));
return quantizedRes;
};
}
bool execute(IOperationExecutionContext* context, float func(float)) {
switch (context->getInputType(kInputTensor)) {
case OperandType::TENSOR_FLOAT16:
return compute<float, _Float16>(func, context->getInputBuffer<_Float16>(kInputTensor),
context->getInputShape(kInputTensor),
context->getOutputBuffer<_Float16>(kOutputTensor));
case OperandType::TENSOR_FLOAT32:
return compute<float, float>(func, context->getInputBuffer<float>(kInputTensor),
context->getInputShape(kInputTensor),
context->getOutputBuffer<float>(kOutputTensor));
default:
NN_RET_CHECK_FAIL() << "Unsupported tensor type for elementwise operation";
}
}
} // namespace
bool executeAbs(IOperationExecutionContext* context) {
switch (context->getInputType(kInputTensor)) {
case OperandType::TENSOR_FLOAT16:
return compute<float, _Float16>(std::abs,
context->getInputBuffer<_Float16>(kInputTensor),
context->getInputShape(kInputTensor),
context->getOutputBuffer<_Float16>(kOutputTensor));
case OperandType::TENSOR_FLOAT32:
return compute<float, float>(std::abs, context->getInputBuffer<float>(kInputTensor),
context->getInputShape(kInputTensor),
context->getOutputBuffer<float>(kOutputTensor));
case OperandType::TENSOR_INT32:
return compute<int32_t, int32_t>(std::abs,
context->getInputBuffer<int32_t>(kInputTensor),
context->getInputShape(kInputTensor),
context->getOutputBuffer<int32_t>(kOutputTensor));
default:
NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation ABS";
}
}
bool executeRsqrt(IOperationExecutionContext* context) {
const std::function<float(float)> frsqrt = [](float x) { return 1.f / std::sqrt(x); };
const auto tensorType = context->getInputType(kInputTensor);
switch (tensorType) {
case OperandType::TENSOR_FLOAT16:
return compute<float, _Float16>(frsqrt, context->getInputBuffer<_Float16>(kInputTensor),
context->getInputShape(kInputTensor),
context->getOutputBuffer<_Float16>(kOutputTensor));
case OperandType::TENSOR_FLOAT32:
return compute<float, float>(frsqrt, context->getInputBuffer<float>(kInputTensor),
context->getInputShape(kInputTensor),
context->getOutputBuffer<float>(kOutputTensor));
case OperandType::TENSOR_QUANT8_ASYMM: {
const Shape inShape = context->getInputShape(kInputTensor);
const Shape outShape = context->getOutputShape(kOutputTensor);
return compute<uint8_t, uint8_t>(
makeQuantized(frsqrt, inShape.scale, static_cast<uint8_t>(inShape.offset),
outShape.scale, static_cast<uint8_t>(outShape.offset)),
context->getInputBuffer<uint8_t>(kInputTensor),
context->getInputShape(kInputTensor),
context->getOutputBuffer<uint8_t>(kOutputTensor));
}
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: {
const Shape inShape = context->getInputShape(kInputTensor);
const Shape outShape = context->getOutputShape(kOutputTensor);
return compute<int8_t, int8_t>(
makeQuantized(frsqrt, inShape.scale, static_cast<int8_t>(inShape.offset),
outShape.scale, static_cast<int8_t>(outShape.offset)),
context->getInputBuffer<int8_t>(kInputTensor),
context->getInputShape(kInputTensor),
context->getOutputBuffer<int8_t>(kOutputTensor));
}
default:
NN_RET_CHECK_FAIL() << "Unsupported tensor type " << tensorType
<< " for operation RSQRT";
}
}
bool prepare(IOperationExecutionContext* context) {
Shape input = context->getInputShape(kInputTensor);
Shape output = context->getOutputShape(kOutputTensor);
NN_RET_CHECK(SetShape(input, &output));
return context->setOutputShape(kOutputTensor, output);
}
bool prepareFloor(IOperationExecutionContext* context) {
Shape input = context->getInputShape(kInputTensor);
Shape output = context->getOutputShape(kOutputTensor);
NN_RET_CHECK_LE(getNumberOfDimensions(input), 4u);
NN_RET_CHECK(SetShape(input, &output));
return context->setOutputShape(kOutputTensor, output);
}
bool executeExp(IOperationExecutionContext* context) {
return execute(context, std::exp);
}
bool executeFloor(IOperationExecutionContext* context) {
return execute(context, std::floor);
}
bool executeLog(IOperationExecutionContext* context) {
return execute(context, std::log);
}
bool executeSin(IOperationExecutionContext* context) {
return execute(context, std::sin);
}
bool executeSqrt(IOperationExecutionContext* context) {
return execute(context, std::sqrt);
}
} // namespace elementwise
NN_REGISTER_OPERATION_DEFAULT_VALIDATION(ABS, elementwise::prepare, elementwise::executeAbs);
NN_REGISTER_OPERATION_DEFAULT_VALIDATION(EXP, elementwise::prepare, elementwise::executeExp);
NN_REGISTER_OPERATION_DEFAULT_VALIDATION(FLOOR, elementwise::prepareFloor,
elementwise::executeFloor);
NN_REGISTER_OPERATION_DEFAULT_VALIDATION(LOG, elementwise::prepare, elementwise::executeLog);
NN_REGISTER_OPERATION_DEFAULT_VALIDATION(RSQRT, elementwise::prepare, elementwise::executeRsqrt);
NN_REGISTER_OPERATION_DEFAULT_VALIDATION(SIN, elementwise::prepare, elementwise::executeSin);
NN_REGISTER_OPERATION_DEFAULT_VALIDATION(SQRT, elementwise::prepare, elementwise::executeSqrt);
} // namespace nn
} // namespace android