| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <gmock/gmock.h> |
| #include <gtest/gtest.h> |
| |
| #include <vector> |
| |
| #include "EmbeddingLookup.h" |
| #include "NeuralNetworksWrapper.h" |
| |
| using ::testing::FloatNear; |
| using ::testing::Matcher; |
| |
| namespace android { |
| namespace nn { |
| namespace wrapper { |
| |
| namespace { |
| |
| std::vector<Matcher<float>> ArrayFloatNear(const std::vector<float>& values, |
| float max_abs_error = 1.e-6) { |
| std::vector<Matcher<float>> matchers; |
| matchers.reserve(values.size()); |
| for (const float& v : values) { |
| matchers.emplace_back(FloatNear(v, max_abs_error)); |
| } |
| return matchers; |
| } |
| |
| } // namespace |
| |
| using ::testing::ElementsAreArray; |
| |
| #define FOR_ALL_INPUT_AND_WEIGHT_TENSORS(ACTION) \ |
| ACTION(Value, float) \ |
| ACTION(Lookup, int) |
| |
| // For all output and intermediate states |
| #define FOR_ALL_OUTPUT_TENSORS(ACTION) ACTION(Output, float) |
| |
| class EmbeddingLookupOpModel { |
| public: |
| EmbeddingLookupOpModel(std::initializer_list<uint32_t> index_shape, |
| std::initializer_list<uint32_t> weight_shape) { |
| auto it = weight_shape.begin(); |
| rows_ = *it++; |
| columns_ = *it++; |
| features_ = *it; |
| |
| std::vector<uint32_t> inputs; |
| |
| OperandType LookupTy(Type::TENSOR_INT32, index_shape); |
| inputs.push_back(model_.addOperand(&LookupTy)); |
| |
| OperandType ValueTy(Type::TENSOR_FLOAT32, weight_shape); |
| inputs.push_back(model_.addOperand(&ValueTy)); |
| |
| std::vector<uint32_t> outputs; |
| |
| OperandType OutputOpndTy(Type::TENSOR_FLOAT32, weight_shape); |
| outputs.push_back(model_.addOperand(&OutputOpndTy)); |
| |
| auto multiAll = [](const std::vector<uint32_t>& dims) -> uint32_t { |
| uint32_t sz = 1; |
| for (uint32_t d : dims) { |
| sz *= d; |
| } |
| return sz; |
| }; |
| |
| Value_.insert(Value_.end(), multiAll(weight_shape), 0.f); |
| Output_.insert(Output_.end(), multiAll(weight_shape), 0.f); |
| |
| model_.addOperation(ANEURALNETWORKS_EMBEDDING_LOOKUP, inputs, outputs); |
| model_.identifyInputsAndOutputs(inputs, outputs); |
| |
| model_.finish(); |
| } |
| |
| void Invoke() { |
| ASSERT_TRUE(model_.isValid()); |
| |
| Compilation compilation(&model_); |
| compilation.finish(); |
| Execution execution(&compilation); |
| |
| #define SetInputOrWeight(X, T) \ |
| ASSERT_EQ(execution.setInput(EmbeddingLookup::k##X##Tensor, X##_.data(), \ |
| sizeof(T) * X##_.size()), \ |
| Result::NO_ERROR); |
| |
| FOR_ALL_INPUT_AND_WEIGHT_TENSORS(SetInputOrWeight); |
| |
| #undef SetInputOrWeight |
| |
| #define SetOutput(X, T) \ |
| ASSERT_EQ(execution.setOutput(EmbeddingLookup::k##X##Tensor, X##_.data(), \ |
| sizeof(T) * X##_.size()), \ |
| Result::NO_ERROR); |
| |
| FOR_ALL_OUTPUT_TENSORS(SetOutput); |
| |
| #undef SetOutput |
| |
| ASSERT_EQ(execution.compute(), Result::NO_ERROR); |
| } |
| |
| #define DefineSetter(X, T) \ |
| void Set##X(const std::vector<T>& f) { X##_.insert(X##_.end(), f.begin(), f.end()); } |
| |
| FOR_ALL_INPUT_AND_WEIGHT_TENSORS(DefineSetter); |
| |
| #undef DefineSetter |
| |
| void Set3DWeightMatrix(const std::function<float(int, int, int)>& function) { |
| for (uint32_t i = 0; i < rows_; i++) { |
| for (uint32_t j = 0; j < columns_; j++) { |
| for (uint32_t k = 0; k < features_; k++) { |
| Value_[(i * columns_ + j) * features_ + k] = function(i, j, k); |
| } |
| } |
| } |
| } |
| |
| const std::vector<float>& GetOutput() const { return Output_; } |
| |
| private: |
| Model model_; |
| uint32_t rows_; |
| uint32_t columns_; |
| uint32_t features_; |
| |
| #define DefineTensor(X, T) std::vector<T> X##_; |
| |
| FOR_ALL_INPUT_AND_WEIGHT_TENSORS(DefineTensor); |
| FOR_ALL_OUTPUT_TENSORS(DefineTensor); |
| |
| #undef DefineTensor |
| }; |
| |
| // TODO: write more tests that exercise the details of the op, such as |
| // lookup errors and variable input shapes. |
| TEST(EmbeddingLookupOpTest, SimpleTest) { |
| EmbeddingLookupOpModel m({3}, {3, 2, 4}); |
| m.SetLookup({1, 0, 2}); |
| m.Set3DWeightMatrix([](int i, int j, int k) { return i + j / 10.0f + k / 100.0f; }); |
| |
| m.Invoke(); |
| |
| EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear({ |
| 1.00, 1.01, 1.02, 1.03, 1.10, 1.11, 1.12, 1.13, // Row 1 |
| 0.00, 0.01, 0.02, 0.03, 0.10, 0.11, 0.12, 0.13, // Row 0 |
| 2.00, 2.01, 2.02, 2.03, 2.10, 2.11, 2.12, 2.13, // Row 2 |
| }))); |
| } |
| |
| } // namespace wrapper |
| } // namespace nn |
| } // namespace android |