| /* |
| * Copyright (C) 2018 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "Operations" |
| |
| #include "Gather.h" |
| |
| #include "OperationResolver.h" |
| #include "OperationsExecutionUtils.h" |
| #include "Tracing.h" |
| |
| namespace android { |
| namespace nn { |
| namespace gather { |
| namespace { |
| |
| template <typename T> |
| inline bool eval(const T* inputData, const Shape& inputShape, int32_t axis, |
| const int32_t* indicesData, const Shape& indicesShape, T* outputData) { |
| const auto outerSize = getNumberOfElements(inputShape, 0, axis); |
| const auto axisSize = getSizeOfDimension(inputShape, axis); |
| const auto innerSize = |
| getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); |
| const auto indicesCount = getNumberOfElements(indicesShape); |
| for (uint32_t outer = 0; outer < outerSize; ++outer) { |
| for (uint32_t outputIndex = 0; outputIndex < indicesCount; ++outputIndex) { |
| const auto inputIndex = static_cast<uint32_t>(indicesData[outputIndex]); |
| NN_RET_CHECK_LE(0u, inputIndex); |
| NN_RET_CHECK_LT(inputIndex, axisSize); |
| std::memcpy(outputData + (outer * indicesCount + outputIndex) * innerSize, |
| inputData + (outer * axisSize + inputIndex) * innerSize, |
| sizeof(T) * innerSize); |
| } |
| } |
| return true; |
| } |
| |
| } // namespace |
| |
| bool prepare(IOperationExecutionContext* context) { |
| Shape input = context->getInputShape(kInputTensor); |
| int32_t axis = context->getInputValue<int32_t>(kInputAxis); |
| NN_RET_CHECK(handleNegativeAxis(input, &axis)); |
| Shape indices = context->getInputShape(kInputIndices); |
| Shape output = context->getOutputShape(kOutputTensor); |
| |
| output.dimensions.clear(); |
| output.dimensions.reserve(getNumberOfDimensions(input) + getNumberOfDimensions(indices) - 1); |
| output.dimensions.insert(output.dimensions.end(), input.dimensions.begin(), |
| input.dimensions.begin() + axis); |
| output.dimensions.insert(output.dimensions.end(), indices.dimensions.begin(), |
| indices.dimensions.end()); |
| output.dimensions.insert(output.dimensions.end(), input.dimensions.begin() + axis + 1, |
| input.dimensions.end()); |
| |
| return context->setOutputShape(kOutputTensor, output); |
| } |
| |
| bool execute(IOperationExecutionContext* context) { |
| int32_t axis = context->getInputValue<int32_t>(kInputAxis); |
| NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis)); |
| switch (context->getInputType(kInputTensor)) { |
| case OperandType::TENSOR_FLOAT16: |
| return eval(context->getInputBuffer<_Float16>(kInputTensor), |
| context->getInputShape(kInputTensor), axis, |
| context->getInputBuffer<int32_t>(kInputIndices), |
| context->getInputShape(kInputIndices), |
| context->getOutputBuffer<_Float16>(kOutputTensor)); |
| case OperandType::TENSOR_FLOAT32: |
| return eval(context->getInputBuffer<float>(kInputTensor), |
| context->getInputShape(kInputTensor), axis, |
| context->getInputBuffer<int32_t>(kInputIndices), |
| context->getInputShape(kInputIndices), |
| context->getOutputBuffer<float>(kOutputTensor)); |
| case OperandType::TENSOR_INT32: |
| return eval(context->getInputBuffer<int32_t>(kInputTensor), |
| context->getInputShape(kInputTensor), axis, |
| context->getInputBuffer<int32_t>(kInputIndices), |
| context->getInputShape(kInputIndices), |
| context->getOutputBuffer<int32_t>(kOutputTensor)); |
| case OperandType::TENSOR_QUANT8_ASYMM: |
| return eval(context->getInputBuffer<uint8_t>(kInputTensor), |
| context->getInputShape(kInputTensor), axis, |
| context->getInputBuffer<int32_t>(kInputIndices), |
| context->getInputShape(kInputIndices), |
| context->getOutputBuffer<uint8_t>(kOutputTensor)); |
| case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: |
| return eval(context->getInputBuffer<int8_t>(kInputTensor), |
| context->getInputShape(kInputTensor), axis, |
| context->getInputBuffer<int32_t>(kInputIndices), |
| context->getInputShape(kInputIndices), |
| context->getOutputBuffer<int8_t>(kOutputTensor)); |
| default: |
| NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName; |
| } |
| } |
| |
| } // namespace gather |
| |
| NN_REGISTER_OPERATION_DEFAULT_VALIDATION(GATHER, gather::prepare, gather::execute); |
| |
| } // namespace nn |
| } // namespace android |