| /* |
| * Copyright (C) 2018 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "Operations" |
| |
| #include "MaximumMinimum.h" |
| |
| #include <algorithm> |
| #include <vector> |
| |
| #include "IndexedShapeWrapper.h" |
| #include "OperationsExecutionUtils.h" |
| #include "Tracing.h" |
| |
| namespace android { |
| namespace nn { |
| namespace maximum_minimum { |
| |
| namespace { |
| |
| template <typename T> |
| bool evalGeneric(const T* aData, const Shape& aShape, const T* bData, const Shape& bShape, |
| bool isMinimum, T* outputData, const Shape& outputShape) { |
| IndexedShapeWrapper aShapeIndexed(aShape); |
| IndexedShapeWrapper bShapeIndexed(bShape); |
| IndexedShapeWrapper outputShapeIndexed(outputShape); |
| |
| std::vector<uint32_t> curIndex(outputShape.dimensions.size(), 0); |
| bool lastIndex = false; |
| do { |
| uint32_t outputFlatIndex; |
| NN_CHECK(outputShapeIndexed.indexToFlatIndex(curIndex, &outputFlatIndex)); |
| uint32_t aFlatIndex; |
| NN_CHECK(aShapeIndexed.broadcastedIndexToFlatIndex(curIndex, &aFlatIndex)); |
| uint32_t bFlatIndex; |
| NN_CHECK(bShapeIndexed.broadcastedIndexToFlatIndex(curIndex, &bFlatIndex)); |
| |
| outputData[outputFlatIndex] = isMinimum ? std::min(aData[aFlatIndex], bData[bFlatIndex]) |
| : std::max(aData[aFlatIndex], bData[bFlatIndex]); |
| |
| NN_CHECK(outputShapeIndexed.nextIndexInplace(&curIndex, &lastIndex)); |
| } while (!lastIndex); |
| |
| return true; |
| } |
| |
| template <typename T> |
| bool evalQuant8(const T* aData, const Shape& aShape, const T* bData, const Shape& bShape, |
| bool isMinimum, T* outputData, const Shape& outputShape) { |
| IndexedShapeWrapper aShapeIndexed(aShape); |
| IndexedShapeWrapper bShapeIndexed(bShape); |
| IndexedShapeWrapper outputShapeIndexed(outputShape); |
| |
| std::vector<uint32_t> curIndex(outputShape.dimensions.size(), 0); |
| bool lastIndex = false; |
| do { |
| uint32_t outputFlatIndex; |
| NN_CHECK(outputShapeIndexed.indexToFlatIndex(curIndex, &outputFlatIndex)); |
| uint32_t aFlatIndex; |
| NN_CHECK(aShapeIndexed.broadcastedIndexToFlatIndex(curIndex, &aFlatIndex)); |
| uint32_t bFlatIndex; |
| NN_CHECK(bShapeIndexed.broadcastedIndexToFlatIndex(curIndex, &bFlatIndex)); |
| |
| T aValue = requantize<T>(aData[aFlatIndex], aShape, outputShape); |
| T bValue = requantize<T>(bData[bFlatIndex], bShape, outputShape); |
| outputData[outputFlatIndex] = |
| isMinimum ? std::min(aValue, bValue) : std::max(aValue, bValue); |
| |
| NN_CHECK(outputShapeIndexed.nextIndexInplace(&curIndex, &lastIndex)); |
| } while (!lastIndex); |
| |
| return true; |
| } |
| |
| } // namespace |
| |
| bool prepare(const Shape& in1, const Shape& in2, Shape* out) { |
| NN_CHECK(in1.type == in2.type); |
| return calculateBroadcastedShape(in1, in2, out); |
| } |
| |
| bool eval(const void* in1, const Shape& shape1, const void* in2, const Shape& shape2, |
| bool isMinimum, void* output, const Shape& outputShape) { |
| NNTRACE_COMP("maximum_minimum::eval"); |
| switch (shape1.type) { |
| case OperandType::TENSOR_FLOAT16: { |
| return evalGeneric(reinterpret_cast<const _Float16*>(in1), shape1, |
| reinterpret_cast<const _Float16*>(in2), shape2, isMinimum, |
| reinterpret_cast<_Float16*>(output), outputShape); |
| } |
| case OperandType::TENSOR_FLOAT32: { |
| return evalGeneric(reinterpret_cast<const float*>(in1), shape1, |
| reinterpret_cast<const float*>(in2), shape2, isMinimum, |
| reinterpret_cast<float*>(output), outputShape); |
| } |
| case OperandType::TENSOR_INT32: { |
| return evalGeneric(reinterpret_cast<const int32_t*>(in1), shape1, |
| reinterpret_cast<const int32_t*>(in2), shape2, isMinimum, |
| reinterpret_cast<int32_t*>(output), outputShape); |
| } |
| case OperandType::TENSOR_QUANT8_ASYMM: { |
| return evalQuant8(reinterpret_cast<const uint8_t*>(in1), shape1, |
| reinterpret_cast<const uint8_t*>(in2), shape2, isMinimum, |
| reinterpret_cast<uint8_t*>(output), outputShape); |
| } |
| case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: { |
| return evalQuant8(reinterpret_cast<const int8_t*>(in1), shape1, |
| reinterpret_cast<const int8_t*>(in2), shape2, isMinimum, |
| reinterpret_cast<int8_t*>(output), outputShape); |
| } |
| default: { |
| LOG(ERROR) << "Unsupported data type: " << shape1.type; |
| return false; |
| } |
| } |
| } |
| |
| } // namespace maximum_minimum |
| } // namespace nn |
| } // namespace android |