| /* |
| * Copyright (C) 2018 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "Operations" |
| |
| #include "PRelu.h" |
| |
| #include <algorithm> |
| #include <vector> |
| |
| #include "IndexedShapeWrapper.h" |
| #include "OperationResolver.h" |
| #include "OperationsExecutionUtils.h" |
| #include "Tracing.h" |
| |
| #ifdef NN_INCLUDE_CPU_IMPLEMENTATION |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wunused-parameter" |
| #pragma clang diagnostic ignored "-Wsign-compare" |
| #pragma clang diagnostic ignored "-Winvalid-partial-specialization" |
| #include <tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h> |
| #pragma clang diagnostic pop |
| #endif // NN_INCLUDE_CPU_IMPLEMENTATION |
| |
| namespace android { |
| namespace nn { |
| namespace prelu { |
| |
| #ifdef NN_INCLUDE_CPU_IMPLEMENTATION |
| template <typename T> |
| inline bool eval(const std::function<T(const T&, const T&)>& func, const T* aData, |
| const Shape& aShape, const T* bData, const Shape& bShape, T* outputData, |
| const Shape& outputShape) { |
| IndexedShapeWrapper aShapeIndexed(aShape); |
| IndexedShapeWrapper bShapeIndexed(bShape); |
| IndexedShapeWrapper outputShapeIndexed(outputShape); |
| std::vector<uint32_t> curIndex(outputShape.dimensions.size(), 0); |
| bool lastIndex = false; |
| do { |
| uint32_t outputFlatIndex; |
| NN_RET_CHECK(outputShapeIndexed.indexToFlatIndex(curIndex, &outputFlatIndex)); |
| uint32_t aFlatIndex; |
| NN_RET_CHECK(aShapeIndexed.broadcastedIndexToFlatIndex(curIndex, &aFlatIndex)); |
| uint32_t bFlatIndex; |
| NN_RET_CHECK(bShapeIndexed.broadcastedIndexToFlatIndex(curIndex, &bFlatIndex)); |
| |
| outputData[outputFlatIndex] = func(aData[aFlatIndex], bData[bFlatIndex]); |
| |
| NN_RET_CHECK(outputShapeIndexed.nextIndexInplace(&curIndex, &lastIndex)); |
| } while (!lastIndex); |
| return true; |
| } |
| |
| template <typename T> |
| bool evalQuant8(const T* aData, const Shape& aShape, const T* bData, const Shape& bShape, |
| T* outputData, const Shape& outputShape) { |
| const int32_t input_offset = -aShape.offset; |
| const int32_t alpha_offset = -bShape.offset; |
| const int32_t output_offset = outputShape.offset; |
| const double input_product_scale = aShape.scale * bShape.scale; |
| const double real_multiplier_pos = aShape.scale / outputShape.scale; |
| const double real_multiplier_neg = input_product_scale / outputShape.scale; |
| int32_t output_multiplier_pos, output_shift_pos; |
| int32_t output_multiplier_neg, output_shift_neg; |
| tflite::QuantizeMultiplier(real_multiplier_pos, &output_multiplier_pos, &output_shift_pos); |
| tflite::QuantizeMultiplier(real_multiplier_neg, &output_multiplier_neg, &output_shift_neg); |
| return eval<T>( |
| [&](const T& val1, const T& val2) -> uint8_t { |
| const int32_t input = input_offset + static_cast<int32_t>(val1); |
| int32_t output_val; |
| if (input >= 0) { |
| output_val = |
| output_offset + tflite::MultiplyByQuantizedMultiplier( |
| input, output_multiplier_pos, output_shift_pos); |
| } else { |
| const int32_t alpha = alpha_offset + static_cast<int32_t>(val2); |
| output_val = output_offset + |
| tflite::MultiplyByQuantizedMultiplier( |
| input * alpha, output_multiplier_neg, output_shift_neg); |
| } |
| return saturateCast<T>(output_val); |
| }, |
| aData, aShape, bData, bShape, outputData, outputShape); |
| } |
| |
| bool prepare(IOperationExecutionContext* context) { |
| Shape input = context->getInputShape(kInputTensor); |
| Shape alpha = context->getInputShape(kAlphaTensor); |
| NN_RET_CHECK(input.type == alpha.type); |
| Shape output = context->getOutputShape(kOutputTensor); |
| NN_RET_CHECK(calculateBroadcastedShape(input, alpha, &output)); |
| return context->setOutputShape(kOutputTensor, output); |
| } |
| |
| bool execute(IOperationExecutionContext* context) { |
| switch (context->getInputType(kInputTensor)) { |
| case OperandType::TENSOR_FLOAT16: |
| return eval<_Float16>( |
| [](const _Float16& val1, const _Float16& val2) -> _Float16 { |
| return val1 >= 0.0f ? val1 : val1 * val2; |
| }, |
| context->getInputBuffer<_Float16>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getInputBuffer<_Float16>(kAlphaTensor), |
| context->getInputShape(kAlphaTensor), |
| context->getOutputBuffer<_Float16>(kOutputTensor), |
| context->getOutputShape(kOutputTensor)); |
| case OperandType::TENSOR_FLOAT32: |
| return eval<float>( |
| [](const float& val1, const float& val2) -> float { |
| return val1 >= 0.0f ? val1 : val1 * val2; |
| }, |
| context->getInputBuffer<float>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getInputBuffer<float>(kAlphaTensor), |
| context->getInputShape(kAlphaTensor), |
| context->getOutputBuffer<float>(kOutputTensor), |
| context->getOutputShape(kOutputTensor)); |
| case OperandType::TENSOR_QUANT8_ASYMM: { |
| return evalQuant8(context->getInputBuffer<uint8_t>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getInputBuffer<uint8_t>(kAlphaTensor), |
| context->getInputShape(kAlphaTensor), |
| context->getOutputBuffer<uint8_t>(kOutputTensor), |
| context->getOutputShape(kOutputTensor)); |
| } |
| case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: { |
| return evalQuant8(context->getInputBuffer<int8_t>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getInputBuffer<int8_t>(kAlphaTensor), |
| context->getInputShape(kAlphaTensor), |
| context->getOutputBuffer<int8_t>(kOutputTensor), |
| context->getOutputShape(kOutputTensor)); |
| } |
| default: |
| NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName; |
| } |
| } |
| #endif // NN_INCLUDE_CPU_IMPLEMENTATION |
| |
| } // namespace prelu |
| |
| NN_REGISTER_OPERATION_DEFAULT_VALIDATION(PRELU, prelu::prepare, prelu::execute); |
| |
| } // namespace nn |
| } // namespace android |