blob: fc718c2c7623bddd061bc84df4ed9e7410f5a5c4 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Operations"
#include "Pack.h"
#include "OperationResolver.h"
#include "OperationsExecutionUtils.h"
#ifdef NN_INCLUDE_CPU_IMPLEMENTATION
#include <limits>
#include <vector>
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-parameter"
#pragma clang diagnostic ignored "-Wsign-compare"
#include <tensorflow/lite/kernels/internal/reference/reference_ops.h>
#pragma clang diagnostic pop
#include "CpuOperationUtils.h"
#endif // NN_INCLUDE_CPU_IMPLEMENTATION
namespace android {
namespace nn {
namespace pack_op {
#ifdef NN_INCLUDE_CPU_IMPLEMENTATION
bool prepare(IOperationExecutionContext* context) {
// All input tensors must have the same dimensions and be of rank 1 or higher.
const Shape firstInputTensorShape = context->getInputShape(kInputFirstTensor);
const uint32_t firstInputTensorRank = getNumberOfDimensions(firstInputTensorShape);
NN_RET_CHECK_GE(firstInputTensorRank, 1U);
for (uint32_t inputTensorNum = 1, inputTensorCount = context->getNumInputs() - 1;
inputTensorNum < inputTensorCount; ++inputTensorNum) {
NN_RET_CHECK(SameShape(firstInputTensorShape,
context->getInputShape(kInputFirstTensor + inputTensorNum)))
<< "Input tensor #" << inputTensorNum
<< " dimensions do not match input tensor #0 dimensions";
}
// Fetch the axis dimension value.
const int32_t axisDimension = context->getInputValue<int32_t>(kInputAxisScalar);
NN_RET_CHECK_GE(axisDimension, 0);
NN_RET_CHECK_LT(uint32_t(axisDimension), firstInputTensorRank + 1);
// TODO: http://b/78268320 validate that output shape is consistent with input rather than
// blindly overwriting it. Output tensor is of rank 1 higher than input tensors.
const uint32_t outputTensorRank = firstInputTensorRank + 1;
// For the (j)th output dimension:
// - If (j) is less than the axis dimension, the (j)th output dimension must match the (j)th
// input dimension.
// - If (j) is the axis dimension, the (j)th output dimension must equal the number of input
// tensors.
// - If (j) is greater than the axis dimension, the (j)th output dimension must match the
// (j-1)th input dimension.
Shape outputShape = context->getOutputShape(kOutputTensor);
outputShape.dimensions.resize(outputTensorRank);
for (int32_t j = 0; j < axisDimension; ++j) {
outputShape.dimensions[j] = firstInputTensorShape.dimensions[j];
}
outputShape.dimensions[axisDimension] = context->getNumInputs() - 1;
for (int32_t j = axisDimension + 1; j < int32_t(outputTensorRank); ++j) {
outputShape.dimensions[j] = firstInputTensorShape.dimensions[j - 1];
}
return context->setOutputShape(kOutputTensor, outputShape);
}
bool packParams(IOperationExecutionContext* context, tflite::PackParams* params) {
const int32_t axis = context->getInputValue<int32_t>(kInputAxisScalar);
NN_RET_CHECK_LE(axis, std::numeric_limits<typeof(params->axis)>().max())
<< "axis value out of range";
params->axis = axis;
const uint32_t inputTensorCount = context->getNumInputs() - 1;
NN_RET_CHECK_LE(inputTensorCount, std::numeric_limits<typeof(params->inputs_count)>().max())
<< "input count out of range";
params->inputs_count = inputTensorCount;
// Note that the NNAPI PACK operation specification requires all input
// tensors and the output tensor to have the same zeroPoint and scale.
const Shape tensorShape = context->getInputShape(kInputFirstTensor);
const std::vector<int32_t> paramsInputZeroPoint(inputTensorCount, tensorShape.offset);
params->input_zeropoint = paramsInputZeroPoint.data();
const std::vector<float> paramsInputScale(inputTensorCount, tensorShape.scale);
params->input_scale = paramsInputScale.data();
params->output_zeropoint = tensorShape.offset;
params->output_scale = tensorShape.scale;
return true;
}
template <typename T>
bool pack(IOperationExecutionContext* context) {
tflite::PackParams params;
NN_RET_CHECK(packParams(context, &params));
const uint32_t inputTensorCount = context->getNumInputs() - 1;
// Note that the NNAPI PACK operation specification requires all input
// tensors to have the same dimensions.
const tflite::RuntimeShape inputTensorShapes =
convertShapeToTflshape(context->getInputShape(kInputFirstTensor));
const std::vector<const tflite::RuntimeShape*> inputShapesPtrs(inputTensorCount,
&inputTensorShapes);
std::vector<const T*> inputData(inputTensorCount);
for (uint32_t inputTensorNum = 0; inputTensorNum < inputTensorCount; ++inputTensorNum) {
inputData[inputTensorNum] = context->getInputBuffer<T>(kInputFirstTensor + inputTensorNum);
}
tflite::reference_ops::Pack(params, inputShapesPtrs.data(), inputData.data(),
convertShapeToTflshape(context->getOutputShape(kOutputTensor)),
context->getOutputBuffer<T>(kOutputTensor));
return true;
}
bool execute(IOperationExecutionContext* context) {
switch (context->getInputType(kInputFirstTensor)) {
case OperandType::TENSOR_FLOAT16:
return pack<_Float16>(context);
case OperandType::TENSOR_FLOAT32:
return pack<float>(context);
case OperandType::TENSOR_QUANT8_ASYMM:
return pack<uint8_t>(context);
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
return pack<int8_t>(context);
case OperandType::TENSOR_INT32:
return pack<int32_t>(context);
default:
NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
}
}
#endif // NN_INCLUDE_CPU_IMPLEMENTATION
} // namespace pack_op
NN_REGISTER_OPERATION_DEFAULT_VALIDATION(PACK, pack_op::prepare, pack_op::execute);
} // namespace nn
} // namespace android