| /* |
| * Copyright (C) 2021 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "Operations" |
| |
| #include "Pack.h" |
| |
| #include "OperationResolver.h" |
| #include "OperationsExecutionUtils.h" |
| |
| #ifdef NN_INCLUDE_CPU_IMPLEMENTATION |
| #include <limits> |
| #include <vector> |
| |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wunused-parameter" |
| #pragma clang diagnostic ignored "-Wsign-compare" |
| #include <tensorflow/lite/kernels/internal/reference/reference_ops.h> |
| #pragma clang diagnostic pop |
| |
| #include "CpuOperationUtils.h" |
| #endif // NN_INCLUDE_CPU_IMPLEMENTATION |
| |
| namespace android { |
| namespace nn { |
| namespace pack_op { |
| |
| #ifdef NN_INCLUDE_CPU_IMPLEMENTATION |
| bool prepare(IOperationExecutionContext* context) { |
| // All input tensors must have the same dimensions and be of rank 1 or higher. |
| const Shape firstInputTensorShape = context->getInputShape(kInputFirstTensor); |
| const uint32_t firstInputTensorRank = getNumberOfDimensions(firstInputTensorShape); |
| NN_RET_CHECK_GE(firstInputTensorRank, 1U); |
| for (uint32_t inputTensorNum = 1, inputTensorCount = context->getNumInputs() - 1; |
| inputTensorNum < inputTensorCount; ++inputTensorNum) { |
| NN_RET_CHECK(SameShape(firstInputTensorShape, |
| context->getInputShape(kInputFirstTensor + inputTensorNum))) |
| << "Input tensor #" << inputTensorNum |
| << " dimensions do not match input tensor #0 dimensions"; |
| } |
| |
| // Fetch the axis dimension value. |
| const int32_t axisDimension = context->getInputValue<int32_t>(kInputAxisScalar); |
| NN_RET_CHECK_GE(axisDimension, 0); |
| NN_RET_CHECK_LT(uint32_t(axisDimension), firstInputTensorRank + 1); |
| |
| // TODO: http://b/78268320 validate that output shape is consistent with input rather than |
| // blindly overwriting it. Output tensor is of rank 1 higher than input tensors. |
| const uint32_t outputTensorRank = firstInputTensorRank + 1; |
| // For the (j)th output dimension: |
| // - If (j) is less than the axis dimension, the (j)th output dimension must match the (j)th |
| // input dimension. |
| // - If (j) is the axis dimension, the (j)th output dimension must equal the number of input |
| // tensors. |
| // - If (j) is greater than the axis dimension, the (j)th output dimension must match the |
| // (j-1)th input dimension. |
| Shape outputShape = context->getOutputShape(kOutputTensor); |
| outputShape.dimensions.resize(outputTensorRank); |
| for (int32_t j = 0; j < axisDimension; ++j) { |
| outputShape.dimensions[j] = firstInputTensorShape.dimensions[j]; |
| } |
| outputShape.dimensions[axisDimension] = context->getNumInputs() - 1; |
| for (int32_t j = axisDimension + 1; j < int32_t(outputTensorRank); ++j) { |
| outputShape.dimensions[j] = firstInputTensorShape.dimensions[j - 1]; |
| } |
| return context->setOutputShape(kOutputTensor, outputShape); |
| } |
| |
| bool packParams(IOperationExecutionContext* context, tflite::PackParams* params) { |
| const int32_t axis = context->getInputValue<int32_t>(kInputAxisScalar); |
| NN_RET_CHECK_LE(axis, std::numeric_limits<typeof(params->axis)>().max()) |
| << "axis value out of range"; |
| params->axis = axis; |
| |
| const uint32_t inputTensorCount = context->getNumInputs() - 1; |
| NN_RET_CHECK_LE(inputTensorCount, std::numeric_limits<typeof(params->inputs_count)>().max()) |
| << "input count out of range"; |
| params->inputs_count = inputTensorCount; |
| |
| // Note that the NNAPI PACK operation specification requires all input |
| // tensors and the output tensor to have the same zeroPoint and scale. |
| const Shape tensorShape = context->getInputShape(kInputFirstTensor); |
| |
| const std::vector<int32_t> paramsInputZeroPoint(inputTensorCount, tensorShape.offset); |
| params->input_zeropoint = paramsInputZeroPoint.data(); |
| const std::vector<float> paramsInputScale(inputTensorCount, tensorShape.scale); |
| params->input_scale = paramsInputScale.data(); |
| params->output_zeropoint = tensorShape.offset; |
| params->output_scale = tensorShape.scale; |
| |
| return true; |
| } |
| |
| template <typename T> |
| bool pack(IOperationExecutionContext* context) { |
| tflite::PackParams params; |
| NN_RET_CHECK(packParams(context, ¶ms)); |
| |
| const uint32_t inputTensorCount = context->getNumInputs() - 1; |
| |
| // Note that the NNAPI PACK operation specification requires all input |
| // tensors to have the same dimensions. |
| const tflite::RuntimeShape inputTensorShapes = |
| convertShapeToTflshape(context->getInputShape(kInputFirstTensor)); |
| const std::vector<const tflite::RuntimeShape*> inputShapesPtrs(inputTensorCount, |
| &inputTensorShapes); |
| |
| std::vector<const T*> inputData(inputTensorCount); |
| for (uint32_t inputTensorNum = 0; inputTensorNum < inputTensorCount; ++inputTensorNum) { |
| inputData[inputTensorNum] = context->getInputBuffer<T>(kInputFirstTensor + inputTensorNum); |
| } |
| |
| tflite::reference_ops::Pack(params, inputShapesPtrs.data(), inputData.data(), |
| convertShapeToTflshape(context->getOutputShape(kOutputTensor)), |
| context->getOutputBuffer<T>(kOutputTensor)); |
| return true; |
| } |
| |
| bool execute(IOperationExecutionContext* context) { |
| switch (context->getInputType(kInputFirstTensor)) { |
| case OperandType::TENSOR_FLOAT16: |
| return pack<_Float16>(context); |
| case OperandType::TENSOR_FLOAT32: |
| return pack<float>(context); |
| case OperandType::TENSOR_QUANT8_ASYMM: |
| return pack<uint8_t>(context); |
| case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: |
| return pack<int8_t>(context); |
| case OperandType::TENSOR_INT32: |
| return pack<int32_t>(context); |
| default: |
| NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName; |
| } |
| } |
| #endif // NN_INCLUDE_CPU_IMPLEMENTATION |
| |
| } // namespace pack_op |
| |
| NN_REGISTER_OPERATION_DEFAULT_VALIDATION(PACK, pack_op::prepare, pack_op::execute); |
| |
| } // namespace nn |
| } // namespace android |