| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| // Contains the implementation of the operations. |
| |
| #define LOG_TAG "Operations" |
| |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wunused-parameter" |
| #pragma clang diagnostic ignored "-Wsign-compare" |
| #pragma clang diagnostic ignored "-Winvalid-partial-specialization" |
| #include <tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h> |
| #include <tensorflow/lite/kernels/internal/reference/legacy_reference_ops.h> |
| #pragma clang diagnostic pop |
| |
| #include <vector> |
| |
| #include "CpuOperationUtils.h" |
| #include "Operations.h" |
| #include "SimpleMath.h" |
| #include "Tracing.h" |
| |
| namespace android { |
| namespace nn { |
| |
| bool meanFloat16(_Float16* inputData, const Shape& inputShape, const int32_t* axis, |
| const Shape& axisShape, bool keepDims, _Float16* outputData, |
| const Shape& outputShape) { |
| NNTRACE_TRANS("meanFloat16"); |
| std::vector<float> inputDataFloat32(getNumberOfElements(inputShape)); |
| convertFloat16ToFloat32(inputData, &inputDataFloat32); |
| |
| std::vector<float> outputDataFloat32(getNumberOfElements(outputShape)); |
| meanGeneric<float, float>(inputDataFloat32.data(), inputShape, axis, axisShape, keepDims, |
| outputDataFloat32.data(), outputShape); |
| convertFloat32ToFloat16(outputDataFloat32, outputData); |
| return true; |
| } |
| |
| template <typename T, typename U> |
| bool meanGeneric(T* inputData, const Shape& inputShape, const int32_t* axis, const Shape& axisShape, |
| bool keepDims, T* outputData, const Shape& outputShape) { |
| NNTRACE_TRANS("meanGeneric"); |
| // Creates a temp index to iterate through input data. |
| int32_t* scratchBuffer = new int32_t[getNumberOfDimensions(inputShape)]; |
| |
| // Creates a temp tensor to store resolved axis given input data. |
| int32_t axisSize = static_cast<int32_t>(getSizeOfDimension(axisShape, 0)); |
| int32_t* resolvedAxis = new int32_t[axisSize]; |
| |
| bool result = true; |
| U* tempSumBuffer = new (std::nothrow) U[getNumberOfElements(outputShape)]; |
| if (!tempSumBuffer) { |
| LOG(ERROR) << "Failed to allocate tempSumBuffer for MEAN"; |
| result = false; |
| } else { |
| NNTRACE_COMP_SWITCH("optimized_ops::Mean"); |
| tflite::reference_ops::Mean<T, U>( |
| inputData, reinterpret_cast<const int*>(inputShape.dimensions.data()), |
| getNumberOfDimensions(inputShape), outputData, |
| reinterpret_cast<const int*>(outputShape.dimensions.data()), |
| getNumberOfDimensions(outputShape), axis, axisSize, keepDims, scratchBuffer, |
| resolvedAxis, tempSumBuffer); |
| delete[] tempSumBuffer; |
| } |
| delete[] scratchBuffer; |
| delete[] resolvedAxis; |
| return result; |
| } |
| template bool meanGeneric<float, float>(float* inputData, const Shape& inputShape, |
| const int32_t* axis, const Shape& axisShape, bool keepDims, |
| float* outputData, const Shape& outputShape); |
| template bool meanGeneric<uint8_t, int32_t>(uint8_t* inputData, const Shape& inputShape, |
| const int32_t* axis, const Shape& axisShape, |
| bool keepDims, uint8_t* outputData, |
| const Shape& outputShape); |
| template bool meanGeneric<int8_t, int32_t>(int8_t* inputData, const Shape& inputShape, |
| const int32_t* axis, const Shape& axisShape, |
| bool keepDims, int8_t* outputData, |
| const Shape& outputShape); |
| |
| } // namespace nn |
| } // namespace android |