blob: a47f89cc53619dc6fb856f2550f339c1abc59adc [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Operations"
#include "TopK_V2.h"
#include <algorithm>
#include <utility>
#include <vector>
#include "OperationResolver.h"
#include "OperationsExecutionUtils.h"
namespace android {
namespace nn {
namespace topk_v2 {
namespace {
template <typename T>
bool evalGeneric(const T* inputData, const Shape& inputShape, const int32_t k, T* valuesData,
int32_t* indicesData) {
const int rowSize = inputShape.dimensions.back();
const int totalSize = getNumberOfElements(inputShape);
std::vector<std::pair<T, int32_t>> values(rowSize);
T* curOutputValue = valuesData;
int32_t* curOutputIndex = indicesData;
for (int rowBegin = 0; rowBegin < totalSize; rowBegin += rowSize) {
for (int i = 0; i < rowSize; ++i) {
values[i] = std::make_pair(inputData[rowBegin + i], i);
}
std::nth_element(values.begin(), values.begin() + (rowSize - k), values.end());
std::sort(values.begin() + (rowSize - k), values.end());
std::reverse(values.begin(), values.end());
for (int i = 0; i < k; ++i) {
*curOutputValue = values[i].first;
*curOutputIndex = values[i].second;
curOutputValue++;
curOutputIndex++;
}
}
return true;
}
template <typename T>
bool executeTyped(IOperationExecutionContext* context) {
return evalGeneric(context->getInputBuffer<T>(kInputTensor),
context->getInputShape(kInputTensor),
context->getInputValue<int32_t>(kTopKScalar),
context->getOutputBuffer<T>(kOutputValuesTensor),
context->getOutputBuffer<int32_t>(kOutputIndicesTensor));
}
} // namespace
bool prepare(IOperationExecutionContext* context) {
const Shape inputShape = context->getInputShape(kInputTensor);
const int32_t k = context->getInputValue<int32_t>(kTopKScalar);
NN_RET_CHECK_GT(k, 0);
NN_RET_CHECK_LE(static_cast<uint32_t>(k), inputShape.dimensions.back());
// Copy input shape to ensure that quantization parameters for the output
// values are the same as for the input tensor.
Shape outputValuesShape = inputShape;
outputValuesShape.dimensions.back() = k;
Shape outputIndicesShape;
outputIndicesShape.type = OperandType::TENSOR_INT32;
outputIndicesShape.dimensions = inputShape.dimensions;
outputIndicesShape.dimensions.back() = k;
return context->setOutputShape(kOutputValuesTensor, outputValuesShape) &&
context->setOutputShape(kOutputIndicesTensor, outputIndicesShape);
}
bool execute(IOperationExecutionContext* context) {
const Shape inputShape = context->getInputShape(kInputTensor);
switch (inputShape.type) {
case OperandType::TENSOR_FLOAT16: {
return executeTyped<_Float16>(context);
} break;
case OperandType::TENSOR_FLOAT32: {
return executeTyped<float>(context);
} break;
case OperandType::TENSOR_INT32: {
return executeTyped<int32_t>(context);
} break;
case OperandType::TENSOR_QUANT8_ASYMM: {
return executeTyped<uint8_t>(context);
} break;
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: {
return executeTyped<int8_t>(context);
} break;
default: {
LOG(ERROR) << "Unsupported data type: " << inputShape.type;
return false;
}
}
}
} // namespace topk_v2
NN_REGISTER_OPERATION_DEFAULT_VALIDATION(TOPK_V2, topk_v2::prepare, topk_v2::execute);
} // namespace nn
} // namespace android