| /* |
| * Copyright (C) 2018 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "Operations" |
| |
| #include "UnidirectionalSequenceRNN.h" |
| |
| #include <algorithm> |
| #include <utility> |
| #include <vector> |
| |
| #include "OperationResolver.h" |
| #include "RNN.h" |
| #include "nnapi/TypeUtils.h" |
| |
| namespace android { |
| namespace nn { |
| namespace unidirectional_sequence_rnn { |
| |
| #ifdef NN_INCLUDE_CPU_IMPLEMENTATION |
| namespace { |
| |
| template <typename T> |
| void transposeFirstTwoDims(const T* input, const Shape& inputShape, T* output) { |
| const uint32_t firstDimSize = getSizeOfDimension(inputShape, 0); |
| const uint32_t secondDimSize = getSizeOfDimension(inputShape, 1); |
| const uint32_t inputSize = getSizeOfDimension(inputShape, 2); |
| for (uint32_t f = 0; f < firstDimSize; ++f) { |
| for (uint32_t s = 0; s < secondDimSize; ++s) { |
| for (uint32_t i = 0; i < inputSize; ++i) { |
| const uint32_t inputIndex = f * secondDimSize * inputSize + s * inputSize + i; |
| const uint32_t outputIndex = s * firstDimSize * inputSize + f * inputSize + i; |
| output[outputIndex] = input[inputIndex]; |
| } |
| } |
| } |
| } |
| |
| template <typename T> |
| bool executeTyped(IOperationExecutionContext* context) { |
| const T* input = context->getInputBuffer<T>(kInputTensor); |
| Shape inputShape = context->getInputShape(kInputTensor); |
| const T* weights = context->getInputBuffer<T>(kWeightsTensor); |
| Shape weightsShape = context->getInputShape(kWeightsTensor); |
| const T* recurrentWeights = context->getInputBuffer<T>(kRecurrentWeightsTensor); |
| Shape recurrentWeightsShape = context->getInputShape(kRecurrentWeightsTensor); |
| const T* bias = context->getInputBuffer<T>(kBiasTensor); |
| const T* hiddenState = context->getInputBuffer<T>(kHiddenStateTensor); |
| int32_t activation = context->getInputValue<int32_t>(kActivationParam); |
| |
| T* output = context->getOutputBuffer<T>(kOutputTensor); |
| Shape outputShape = context->getOutputShape(kOutputTensor); |
| |
| int32_t timeMajor = context->getInputValue<int32_t>(kTimeMajorParam); |
| // If the input tensors are not in time major format, we transpose the first |
| // two dimensions, and set input and output pointers to temporary vectors |
| // which are transposed back after the RNN is applied. |
| std::vector<T> inputTransposed; |
| std::vector<T> outputTransposed; |
| if (!timeMajor) { |
| // Convert input and output to time major format. |
| inputTransposed.resize(getNumberOfElements(inputShape)); |
| outputTransposed.resize(getNumberOfElements(outputShape)); |
| transposeFirstTwoDims(input, inputShape, inputTransposed.data()); |
| input = inputTransposed.data(); |
| output = outputTransposed.data(); |
| std::swap(inputShape.dimensions[0], inputShape.dimensions[1]); |
| std::swap(outputShape.dimensions[0], outputShape.dimensions[1]); |
| } |
| |
| const uint32_t maxTime = getSizeOfDimension(inputShape, 0); |
| const uint32_t batchSize = getSizeOfDimension(inputShape, 1); |
| const uint32_t inputSize = getSizeOfDimension(inputShape, 2); |
| const uint32_t numUnits = getSizeOfDimension(weightsShape, 0); |
| |
| // A shape at a fixed step (removed time dimension). |
| Shape fixedTimeInputShape = inputShape; |
| fixedTimeInputShape.dimensions.resize(2); |
| fixedTimeInputShape.dimensions[0] = inputShape.dimensions[1]; |
| fixedTimeInputShape.dimensions[1] = inputShape.dimensions[2]; |
| |
| for (uint32_t i = 0; i < maxTime; ++i) { |
| RNN::RNNStep<T>(input, fixedTimeInputShape, hiddenState, bias, weights, weightsShape, |
| recurrentWeights, recurrentWeightsShape, activation, output); |
| input += batchSize * inputSize; |
| hiddenState = output; |
| output += batchSize * numUnits; |
| } |
| |
| if (!timeMajor) { |
| transposeFirstTwoDims(outputTransposed.data(), outputShape, |
| context->getOutputBuffer<T>(kOutputTensor)); |
| } |
| |
| if (context->getNumOutputs() == kNumOutputsWithState) { |
| // We checked that the state output is not omitted during preparation. |
| T* stateOutput = context->getOutputBuffer<T>(kStateOutputTensor); |
| std::copy(hiddenState, hiddenState + batchSize * numUnits, stateOutput); |
| } |
| return true; |
| } |
| |
| } // namespace |
| |
| bool prepare(IOperationExecutionContext* context) { |
| Shape input = context->getInputShape(kInputTensor); |
| Shape weights = context->getInputShape(kWeightsTensor); |
| Shape recurrentWeights = context->getInputShape(kRecurrentWeightsTensor); |
| Shape bias = context->getInputShape(kBiasTensor); |
| Shape hiddenState = context->getInputShape(kHiddenStateTensor); |
| |
| int32_t timeMajor = context->getInputValue<int32_t>(kTimeMajorParam); |
| NN_RET_CHECK(timeMajor == 0 || timeMajor == 1); |
| const uint32_t batchSize = |
| timeMajor ? getSizeOfDimension(input, 1) : getSizeOfDimension(input, 0); |
| const uint32_t maxTime = |
| timeMajor ? getSizeOfDimension(input, 0) : getSizeOfDimension(input, 1); |
| const uint32_t numUnits = getSizeOfDimension(weights, 0); |
| const uint32_t inputSize = getSizeOfDimension(input, 2); |
| |
| NN_RET_CHECK_EQ(getNumberOfDimensions(input), 3u); |
| NN_RET_CHECK_EQ(getNumberOfDimensions(weights), 2u); |
| NN_RET_CHECK_EQ(getNumberOfDimensions(recurrentWeights), 2u); |
| NN_RET_CHECK_EQ(getNumberOfDimensions(bias), 1u); |
| NN_RET_CHECK_EQ(getNumberOfDimensions(hiddenState), 2u); |
| |
| NN_RET_CHECK_EQ(inputSize, getSizeOfDimension(weights, 1)); |
| NN_RET_CHECK_EQ(numUnits, getSizeOfDimension(bias, 0)); |
| NN_RET_CHECK_EQ(numUnits, getSizeOfDimension(recurrentWeights, 0)); |
| NN_RET_CHECK_EQ(numUnits, getSizeOfDimension(recurrentWeights, 1)); |
| NN_RET_CHECK_EQ(batchSize, getSizeOfDimension(hiddenState, 0)); |
| NN_RET_CHECK_EQ(numUnits, getSizeOfDimension(hiddenState, 1)); |
| |
| Shape output = context->getOutputShape(kOutputTensor); |
| output.dimensions.resize(3); |
| output.dimensions[0] = timeMajor ? maxTime : batchSize; |
| output.dimensions[1] = timeMajor ? batchSize : maxTime; |
| output.dimensions[2] = numUnits; |
| |
| if (context->getNumOutputs() == kNumOutputsWithState) { |
| NN_RET_CHECK(!context->isOmittedOutput(kStateOutputTensor)); |
| Shape outputStateShape = context->getInputShape(kHiddenStateTensor); |
| outputStateShape.dimensions.resize(2); |
| outputStateShape.dimensions[0] = batchSize; |
| outputStateShape.dimensions[1] = numUnits; |
| NN_RET_CHECK(context->setOutputShape(kStateOutputTensor, outputStateShape)); |
| } |
| |
| return context->setOutputShape(kOutputTensor, output); |
| } |
| |
| bool execute(IOperationExecutionContext* context) { |
| if (context->getInputType(kInputTensor) == OperandType::TENSOR_FLOAT16) { |
| executeTyped<_Float16>(context); |
| } else { |
| executeTyped<float>(context); |
| } |
| return true; |
| } |
| #endif // NN_INCLUDE_CPU_IMPLEMENTATION |
| |
| } // namespace unidirectional_sequence_rnn |
| |
| NN_REGISTER_OPERATION_DEFAULT_VALIDATION(UNIDIRECTIONAL_SEQUENCE_RNN, |
| unidirectional_sequence_rnn::prepare, |
| unidirectional_sequence_rnn::execute); |
| |
| } // namespace nn |
| } // namespace android |