| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ANDROID_PACKAGES_MODULES_NEURALNETWORKS_COMMON_CPU_OPERATION_UTILS_H |
| #define ANDROID_PACKAGES_MODULES_NEURALNETWORKS_COMMON_CPU_OPERATION_UTILS_H |
| |
| #include <android-base/logging.h> |
| #include <tensorflow/lite/kernels/internal/types.h> |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <limits> |
| #include <vector> |
| |
| #include "OperationsExecutionUtils.h" |
| |
| namespace android { |
| namespace nn { |
| |
| // The implementations in tflite/kernels/internal/ take a Dims<4> object |
| // even if the original tensors were not 4D. |
| inline tflite::Dims<4> convertShapeToDims(const Shape& shape) { |
| CHECK_LE(shape.dimensions.size(), 4u); |
| tflite::Dims<4> dims; |
| |
| // The dimensions are reversed in Dims<4>. |
| for (int i = 0; i < 4; ++i) { |
| int src = static_cast<int>(shape.dimensions.size()) - i - 1; |
| if (src >= 0) { |
| dims.sizes[i] = static_cast<int>(getSizeOfDimension(shape, src)); |
| } else { |
| dims.sizes[i] = 1; |
| } |
| } |
| |
| dims.strides[0] = 1; |
| for (int i = 1; i < 4; i++) { |
| dims.strides[i] = dims.strides[i - 1] * dims.sizes[i - 1]; |
| } |
| return dims; |
| } |
| |
| inline tflite::RuntimeShape convertShapeToTflshape(const Shape& shape) { |
| std::vector<int32_t> tflShapeDim(shape.dimensions.begin(), shape.dimensions.end()); |
| return tflite::RuntimeShape(tflShapeDim.size(), tflShapeDim.data()); |
| } |
| |
| inline void convertFloat16ToFloat32(const _Float16* input, std::vector<float>* output) { |
| CHECK(input != nullptr); |
| CHECK(output != nullptr); |
| for (size_t i = 0; i < output->size(); ++i) { |
| (*output)[i] = static_cast<float>(input[i]); |
| } |
| } |
| |
| inline void convertFloat32ToFloat16(const std::vector<float>& input, _Float16* output) { |
| CHECK(output != nullptr); |
| for (size_t i = 0; i < input.size(); ++i) { |
| output[i] = input[i]; |
| } |
| } |
| |
| // Convert int8 quantized values to uint8 assuming that the scale is the same |
| // and the distance between offsets is 128. |
| inline void convertInt8ToUInt8(const int8_t* input, std::vector<uint8_t>* output) { |
| CHECK(input != nullptr); |
| CHECK(output != nullptr); |
| for (size_t i = 0; i < output->size(); ++i) { |
| (*output)[i] = static_cast<uint8_t>(static_cast<int32_t>(input[i]) + 128); |
| } |
| } |
| |
| // Convert uint8 quantized values to int8 assuming that the scale is the same |
| // and the distance between offsets is 128. |
| inline void convertUInt8ToInt8(const std::vector<uint8_t>& input, int8_t* output) { |
| CHECK(output != nullptr); |
| for (size_t i = 0; i < input.size(); ++i) { |
| output[i] = static_cast<int8_t>(static_cast<int32_t>(input[i]) - 128); |
| } |
| } |
| |
| template <typename T> |
| inline void convertQuantToFloat32(const T* input, float scale, int32_t zeroPoint, |
| std::vector<float>* output) { |
| CHECK(input != nullptr); |
| CHECK(output != nullptr); |
| for (size_t i = 0; i < output->size(); ++i) { |
| (*output)[i] = (static_cast<float>(input[i]) - zeroPoint) * scale; |
| } |
| } |
| |
| template <typename T> |
| inline void convertFloat32ToQuant(const std::vector<float>& input, float scale, int32_t zeroPoint, |
| T* output) { |
| CHECK(output != nullptr); |
| for (size_t i = 0; i < input.size(); ++i) { |
| int32_t intVal = std::round(input[i] / scale + zeroPoint); |
| intVal = std::min<int32_t>(std::max<int32_t>(intVal, std::numeric_limits<T>::min()), |
| std::numeric_limits<T>::max()); |
| output[i] = static_cast<T>(intVal); |
| } |
| } |
| |
| template <typename T> |
| inline bool convertNchwToNhwc(const T* nchw, const Shape& nchwShape, std::vector<T>* nhwc, |
| Shape* nhwcShape) { |
| NN_RET_CHECK_EQ(getNumberOfDimensions(nchwShape), 4u) |
| << "Error converting a non-4-D tensor to NHWC layout"; |
| *nhwcShape = nchwShape; |
| const auto& fromDim = nchwShape.dimensions; |
| nhwcShape->dimensions = {fromDim[0], fromDim[2], fromDim[3], fromDim[1]}; |
| nhwc->resize(getNumberOfElements(nchwShape)); |
| auto to = nhwc->data(); |
| uint32_t spatialSize = fromDim[2] * fromDim[3]; |
| for (uint32_t n = 0; n < fromDim[0]; n++) { |
| for (uint32_t hw = 0; hw < spatialSize; hw++) { |
| for (uint32_t c = 0; c < fromDim[1]; c++) { |
| uint32_t fromIndex = n * fromDim[1] * spatialSize + c * spatialSize + hw; |
| *to++ = nchw[fromIndex]; |
| } |
| } |
| } |
| return true; |
| } |
| |
| template <typename T> |
| inline bool convertNhwcToNchw(const std::vector<T>& nhwc, const Shape& nhwcShape, T* nchw) { |
| NN_RET_CHECK_EQ(getNumberOfDimensions(nhwcShape), 4u) |
| << "Error converting a non-4-D tensor to NCHW layout"; |
| const auto& fromDim = nhwcShape.dimensions; |
| const auto from = nhwc.data(); |
| uint32_t spatialSize = fromDim[1] * fromDim[2]; |
| for (uint32_t n = 0; n < fromDim[0]; n++) { |
| for (uint32_t c = 0; c < fromDim[3]; c++) { |
| for (uint32_t hw = 0; hw < spatialSize; hw++) { |
| uint32_t fromIndex = n * spatialSize * fromDim[3] + hw * fromDim[3] + c; |
| *nchw++ = from[fromIndex]; |
| } |
| } |
| } |
| return true; |
| } |
| |
| template <typename T> |
| class InputWithLayout { |
| public: |
| InputWithLayout(bool useNchw) : mDataOriginal(nullptr), mUseNchw(useNchw) {} |
| |
| bool initialize(const T* data, const Shape& shape) { |
| mDataOriginal = data; |
| mShape = shape; |
| if (mUseNchw) { |
| return convertNchwToNhwc(mDataOriginal, shape, &mDataNhwc, &mShape); |
| } |
| return true; |
| } |
| |
| const T* getNhwcBuffer() { return mUseNchw ? mDataNhwc.data() : mDataOriginal; } |
| const Shape& getNhwcShape() { return mShape; } |
| |
| private: |
| const T* mDataOriginal; |
| std::vector<T> mDataNhwc; |
| Shape mShape; |
| bool mUseNchw; |
| }; |
| |
| template <typename T> |
| class OutputWithLayout { |
| public: |
| OutputWithLayout(bool useNchw) : mDataOriginal(nullptr), mUseNchw(useNchw) {} |
| |
| bool initialize(T* data, const Shape& shape) { |
| NN_RET_CHECK_EQ(getNumberOfDimensions(shape), 4u); |
| mDataOriginal = data; |
| mShape = shape; |
| if (mUseNchw) { |
| const auto& dim = shape.dimensions; |
| mShape.dimensions = {dim[0], dim[2], dim[3], dim[1]}; |
| mDataNhwc.resize(getNumberOfElements(shape)); |
| } |
| return true; |
| } |
| |
| T* getNhwcBuffer() { return mUseNchw ? mDataNhwc.data() : mDataOriginal; } |
| const Shape& getNhwcShape() { return mShape; } |
| bool commit() { |
| if (mUseNchw) { |
| return convertNhwcToNchw(mDataNhwc, mShape, mDataOriginal); |
| } |
| return true; |
| } |
| |
| private: |
| T* mDataOriginal; |
| std::vector<T> mDataNhwc; |
| Shape mShape; |
| bool mUseNchw; |
| }; |
| |
| template <typename T> |
| inline void CalculateActivationRange(int32_t activation, const Shape& outputShape, |
| int32_t* outputActivationMin, int32_t* outputActivationMax); |
| |
| template <> |
| inline void CalculateActivationRange<uint8_t>(int32_t activation, const Shape& outputShape, |
| int32_t* outputActivationMin, |
| int32_t* outputActivationMax) { |
| CalculateActivationRangeUint8(activation, outputShape, outputActivationMin, |
| outputActivationMax); |
| } |
| |
| template <> |
| inline void CalculateActivationRange<int8_t>(int32_t activation, const Shape& outputShape, |
| int32_t* outputActivationMin, |
| int32_t* outputActivationMax) { |
| CalculateActivationRangeInt8(activation, outputShape, outputActivationMin, outputActivationMax); |
| } |
| |
| } // namespace nn |
| } // namespace android |
| |
| #endif // ANDROID_PACKAGES_MODULES_NEURALNETWORKS_COMMON_CPU_OPERATION_UTILS_H |