| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| // Contains all the entry points to the C Neural Networks API. |
| // We do basic validation of the operands and then call the class |
| // that implements the functionality. |
| |
| #define LOG_TAG "NeuralNetworks" |
| |
| #include "NeuralNetworks.h" |
| |
| #include <ControlFlow.h> |
| #include <LegacyUtils.h> |
| #include <MetaModel.h> |
| #include <Tracing.h> |
| #include <nnapi/Types.h> |
| |
| #include <algorithm> |
| #include <cstddef> |
| #include <memory> |
| #include <utility> |
| #include <vector> |
| |
| #include "BurstBuilder.h" |
| #include "CompilationBuilder.h" |
| #include "Event.h" |
| #include "ExecutionBuilder.h" |
| #include "ExecutionCallback.h" |
| #include "Manager.h" |
| #include "Memory.h" |
| #include "ModelBuilder.h" |
| #include "NeuralNetworksExtensions.h" |
| #include "NeuralNetworksOEM.h" |
| #include "Telemetry.h" |
| |
| #ifdef NN_COMPATIBILITY_LIBRARY_BUILD |
| #include "NeuralNetworksSupportLibraryImpl.h" |
| #endif // NN_COMPATIBILITY_LIBRARY_BUILD |
| |
| using namespace android::nn; |
| |
| // Make sure the constants defined in the header files have not changed values. |
| // IMPORTANT: When adding new values, update kNumberOfDataTypes or kNumberOfDataTypesOEM |
| // in Utils.h. |
| static_assert(ANEURALNETWORKS_FLOAT32 == 0, "ANEURALNETWORKS_FLOAT32 has changed"); |
| static_assert(ANEURALNETWORKS_INT32 == 1, "ANEURALNETWORKS_INT32 has changed"); |
| static_assert(ANEURALNETWORKS_UINT32 == 2, "ANEURALNETWORKS_UINT32 has changed"); |
| static_assert(ANEURALNETWORKS_TENSOR_FLOAT32 == 3, "ANEURALNETWORKS_TENSOR_FLOAT32 has changed"); |
| static_assert(ANEURALNETWORKS_TENSOR_INT32 == 4, "ANEURALNETWORKS_TENSOR_INT32 has changed"); |
| static_assert(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM == 5, |
| "ANEURALNETWORKS_TENSOR_QUANT8_ASYMM has changed"); |
| static_assert(ANEURALNETWORKS_BOOL == 6, "ANEURALNETWORKS_BOOL has changed"); |
| static_assert(ANEURALNETWORKS_TENSOR_QUANT16_SYMM == 7, |
| "ANEURALNETWORKS_TENSOR_QUANT16_SYMM has changed"); |
| static_assert(ANEURALNETWORKS_TENSOR_FLOAT16 == 8, "ANEURALNETWORKS_TENSOR_FLOAT16 has changed"); |
| static_assert(ANEURALNETWORKS_TENSOR_BOOL8 == 9, "ANEURALNETWORKS_TENSOR_BOOL8 has changed"); |
| static_assert(ANEURALNETWORKS_FLOAT16 == 10, "ANEURALNETWORKS_FLOAT16 has changed"); |
| static_assert(ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL == 11, |
| "ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL has changed"); |
| static_assert(ANEURALNETWORKS_TENSOR_QUANT16_ASYMM == 12, |
| "ANEURALNETWORKS_TENSOR_QUANT16_ASYMM has changed"); |
| static_assert(ANEURALNETWORKS_TENSOR_QUANT8_SYMM == 13, |
| "ANEURALNETWORKS_TENSOR_QUANT8_SYMM has changed"); |
| static_assert(ANEURALNETWORKS_OEM_SCALAR == 10000, "ANEURALNETWORKS_OEM_SCALAR has changed"); |
| static_assert(ANEURALNETWORKS_TENSOR_OEM_BYTE == 10001, |
| "ANEURALNETWORKS_TENSOR_OEM_BYTE has changed"); |
| |
| // IMPORTANT: When adding new values, update kNumberOfOperationTypes or |
| // kNumberOfOperationTypesOEMin Utils.h. |
| static_assert(ANEURALNETWORKS_ADD == 0, "ANEURALNETWORKS_ADD has changed"); |
| static_assert(ANEURALNETWORKS_AVERAGE_POOL_2D == 1, "ANEURALNETWORKS_AVERAGE_POOL_2D has changed"); |
| static_assert(ANEURALNETWORKS_CONCATENATION == 2, "ANEURALNETWORKS_CONCATENATION has changed"); |
| static_assert(ANEURALNETWORKS_CONV_2D == 3, "ANEURALNETWORKS_CONV_2D has changed"); |
| static_assert(ANEURALNETWORKS_DEPTHWISE_CONV_2D == 4, |
| "ANEURALNETWORKS_DEPTHWISE_CONV_2D has changed"); |
| static_assert(ANEURALNETWORKS_DEPTH_TO_SPACE == 5, "ANEURALNETWORKS_DEPTH_TO_SPACE has changed"); |
| static_assert(ANEURALNETWORKS_DEQUANTIZE == 6, "ANEURALNETWORKS_DEQUANTIZE has changed"); |
| static_assert(ANEURALNETWORKS_EMBEDDING_LOOKUP == 7, |
| "ANEURALNETWORKS_EMBEDDING_LOOKUP has changed"); |
| static_assert(ANEURALNETWORKS_FLOOR == 8, "ANEURALNETWORKS_FLOOR has changed"); |
| static_assert(ANEURALNETWORKS_FULLY_CONNECTED == 9, "ANEURALNETWORKS_FULLY_CONNECTED has changed"); |
| static_assert(ANEURALNETWORKS_HASHTABLE_LOOKUP == 10, |
| "ANEURALNETWORKS_HASHTABLE_LOOKUP has changed"); |
| static_assert(ANEURALNETWORKS_L2_NORMALIZATION == 11, |
| "ANEURALNETWORKS_L2_NORMALIZATION has changed"); |
| static_assert(ANEURALNETWORKS_L2_POOL_2D == 12, "ANEURALNETWORKS_L2_POOL has changed"); |
| static_assert(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION == 13, |
| "ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION has changed"); |
| static_assert(ANEURALNETWORKS_LOGISTIC == 14, "ANEURALNETWORKS_LOGISTIC has changed"); |
| static_assert(ANEURALNETWORKS_LSH_PROJECTION == 15, "ANEURALNETWORKS_LSH_PROJECTION has changed"); |
| static_assert(ANEURALNETWORKS_LSTM == 16, "ANEURALNETWORKS_LSTM has changed"); |
| static_assert(ANEURALNETWORKS_MAX_POOL_2D == 17, "ANEURALNETWORKS_MAX_POOL has changed"); |
| static_assert(ANEURALNETWORKS_MUL == 18, "ANEURALNETWORKS_MUL has changed"); |
| static_assert(ANEURALNETWORKS_RELU == 19, "ANEURALNETWORKS_RELU has changed"); |
| static_assert(ANEURALNETWORKS_RELU1 == 20, "ANEURALNETWORKS_RELU1 has changed"); |
| static_assert(ANEURALNETWORKS_RELU6 == 21, "ANEURALNETWORKS_RELU6 has changed"); |
| static_assert(ANEURALNETWORKS_RESHAPE == 22, "ANEURALNETWORKS_RESHAPE has changed"); |
| static_assert(ANEURALNETWORKS_RESIZE_BILINEAR == 23, "ANEURALNETWORKS_RESIZE_BILINEAR has changed"); |
| static_assert(ANEURALNETWORKS_RNN == 24, "ANEURALNETWORKS_RNN has changed"); |
| static_assert(ANEURALNETWORKS_SOFTMAX == 25, "ANEURALNETWORKS_SOFTMAX has changed"); |
| static_assert(ANEURALNETWORKS_SPACE_TO_DEPTH == 26, "ANEURALNETWORKS_SPACE_TO_DEPTH has changed"); |
| static_assert(ANEURALNETWORKS_SVDF == 27, "ANEURALNETWORKS_SVDF has changed"); |
| static_assert(ANEURALNETWORKS_TANH == 28, "ANEURALNETWORKS_TANH has changed"); |
| |
| static_assert(ANEURALNETWORKS_BATCH_TO_SPACE_ND == 29, |
| "ANEURALNETWORKS_BATCH_TO_SPACE_ND has changed"); |
| static_assert(ANEURALNETWORKS_DIV == 30, "ANEURALNETWORKS_DIV has changed"); |
| static_assert(ANEURALNETWORKS_MEAN == 31, "ANEURALNETWORKS_MEAN has changed"); |
| static_assert(ANEURALNETWORKS_PAD == 32, "ANEURALNETWORKS_PAD has changed"); |
| static_assert(ANEURALNETWORKS_SPACE_TO_BATCH_ND == 33, |
| "ANEURALNETWORKS_SPACE_TO_BATCH_ND has changed"); |
| static_assert(ANEURALNETWORKS_SQUEEZE == 34, "ANEURALNETWORKS_SQUEEZE has changed"); |
| static_assert(ANEURALNETWORKS_STRIDED_SLICE == 35, "ANEURALNETWORKS_STRIDED_SLICE has changed"); |
| static_assert(ANEURALNETWORKS_SUB == 36, "ANEURALNETWORKS_TANH has changed"); |
| static_assert(ANEURALNETWORKS_TRANSPOSE == 37, "ANEURALNETWORKS_TRANSPOSE has changed"); |
| |
| static_assert(ANEURALNETWORKS_ABS == 38, "ANEURALNETWORKS_ABS has changed"); |
| static_assert(ANEURALNETWORKS_ARGMAX == 39, "ANEURALNETWORKS_ARGMAX has changed"); |
| static_assert(ANEURALNETWORKS_ARGMIN == 40, "ANEURALNETWORKS_ARGMIN has changed"); |
| static_assert(ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM == 41, |
| "ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM has changed"); |
| static_assert(ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_LSTM == 42, |
| "ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_LSTM has changed"); |
| static_assert(ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_RNN == 43, |
| "ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_RNN has changed"); |
| static_assert(ANEURALNETWORKS_BOX_WITH_NMS_LIMIT == 44, |
| "ANEURALNETWORKS_BOX_WITH_NMS_LIMIT has changed"); |
| static_assert(ANEURALNETWORKS_CAST == 45, "ANEURALNETWORKS_CAST has changed"); |
| static_assert(ANEURALNETWORKS_CHANNEL_SHUFFLE == 46, "ANEURALNETWORKS_CHANNEL_SHUFFLE has changed"); |
| static_assert(ANEURALNETWORKS_DETECTION_POSTPROCESSING == 47, |
| "ANEURALNETWORKS_DETECTION_POSTPROCESSING has changed"); |
| static_assert(ANEURALNETWORKS_EQUAL == 48, "ANEURALNETWORKS_EQUAL has changed"); |
| static_assert(ANEURALNETWORKS_EXP == 49, "ANEURALNETWORKS_EXP has changed"); |
| static_assert(ANEURALNETWORKS_EXPAND_DIMS == 50, "ANEURALNETWORKS_EXPAND_DIMS has changed"); |
| static_assert(ANEURALNETWORKS_GATHER == 51, "ANEURALNETWORKS_GATHER has changed"); |
| static_assert(ANEURALNETWORKS_GENERATE_PROPOSALS == 52, |
| "ANEURALNETWORKS_GENERATE_PROPOSALS has changed"); |
| static_assert(ANEURALNETWORKS_GREATER == 53, "ANEURALNETWORKS_GREATER has changed"); |
| static_assert(ANEURALNETWORKS_GREATER_EQUAL == 54, "ANEURALNETWORKS_GREATER_EQUAL has changed"); |
| static_assert(ANEURALNETWORKS_GROUPED_CONV_2D == 55, "ANEURALNETWORKS_GROUPED_CONV_2D has changed"); |
| static_assert(ANEURALNETWORKS_HEATMAP_MAX_KEYPOINT == 56, |
| "ANEURALNETWORKS_HEATMAP_MAX_KEYPOINT has changed"); |
| static_assert(ANEURALNETWORKS_INSTANCE_NORMALIZATION == 57, |
| "ANEURALNETWORKS_INSTANCE_NORMALIZATION has changed"); |
| static_assert(ANEURALNETWORKS_LESS == 58, "ANEURALNETWORKS_LESS has changed"); |
| static_assert(ANEURALNETWORKS_LESS_EQUAL == 59, "ANEURALNETWORKS_LESS_EQUAL has changed"); |
| static_assert(ANEURALNETWORKS_LOG == 60, "ANEURALNETWORKS_LOG has changed"); |
| static_assert(ANEURALNETWORKS_LOGICAL_AND == 61, "ANEURALNETWORKS_LOGICAL_AND has changed"); |
| static_assert(ANEURALNETWORKS_LOGICAL_NOT == 62, "ANEURALNETWORKS_LOGICAL_NOT has changed"); |
| static_assert(ANEURALNETWORKS_LOGICAL_OR == 63, "ANEURALNETWORKS_LOGICAL_OR has changed"); |
| static_assert(ANEURALNETWORKS_LOG_SOFTMAX == 64, "ANEURALNETWORKS_LOG_SOFTMAX has changed"); |
| static_assert(ANEURALNETWORKS_MAXIMUM == 65, "ANEURALNETWORKS_MAXIMUM has changed"); |
| static_assert(ANEURALNETWORKS_MINIMUM == 66, "ANEURALNETWORKS_MINIMUM has changed"); |
| static_assert(ANEURALNETWORKS_NEG == 67, "ANEURALNETWORKS_NEG has changed"); |
| static_assert(ANEURALNETWORKS_NOT_EQUAL == 68, "ANEURALNETWORKS_NOT_EQUAL has changed"); |
| static_assert(ANEURALNETWORKS_PAD_V2 == 69, "ANEURALNETWORKS_PAD_V2 has changed"); |
| static_assert(ANEURALNETWORKS_POW == 70, "ANEURALNETWORKS_POW has changed"); |
| static_assert(ANEURALNETWORKS_PRELU == 71, "ANEURALNETWORKS_PRELU has changed"); |
| static_assert(ANEURALNETWORKS_QUANTIZE == 72, "ANEURALNETWORKS_QUANTIZE has changed"); |
| static_assert(ANEURALNETWORKS_QUANTIZED_16BIT_LSTM == 73, |
| "ANEURALNETWORKS_QUANTIZED_16BIT_LSTM has changed"); |
| static_assert(ANEURALNETWORKS_RANDOM_MULTINOMIAL == 74, |
| "ANEURALNETWORKS_RANDOM_MULTINOMIAL has changed"); |
| static_assert(ANEURALNETWORKS_REDUCE_ALL == 75, "ANEURALNETWORKS_REDUCE_ALL has changed"); |
| static_assert(ANEURALNETWORKS_REDUCE_ANY == 76, "ANEURALNETWORKS_REDUCE_ANY has changed"); |
| static_assert(ANEURALNETWORKS_REDUCE_MAX == 77, "ANEURALNETWORKS_REDUCE_MAX has changed"); |
| static_assert(ANEURALNETWORKS_REDUCE_MIN == 78, "ANEURALNETWORKS_REDUCE_MIN has changed"); |
| static_assert(ANEURALNETWORKS_REDUCE_PROD == 79, "ANEURALNETWORKS_REDUCE_PROD has changed"); |
| static_assert(ANEURALNETWORKS_REDUCE_SUM == 80, "ANEURALNETWORKS_REDUCE_SUM has changed"); |
| static_assert(ANEURALNETWORKS_ROI_ALIGN == 81, "ANEURALNETWORKS_ROI_ALIGN has changed"); |
| static_assert(ANEURALNETWORKS_ROI_POOLING == 82, "ANEURALNETWORKS_ROI_POOLING has changed"); |
| static_assert(ANEURALNETWORKS_RSQRT == 83, "ANEURALNETWORKS_RSQRT has changed"); |
| static_assert(ANEURALNETWORKS_SELECT == 84, "ANEURALNETWORKS_SELECT has changed"); |
| static_assert(ANEURALNETWORKS_SIN == 85, "ANEURALNETWORKS_SIN has changed"); |
| static_assert(ANEURALNETWORKS_SLICE == 86, "ANEURALNETWORKS_SLICE has changed"); |
| static_assert(ANEURALNETWORKS_SPLIT == 87, "ANEURALNETWORKS_SPLIT has changed"); |
| static_assert(ANEURALNETWORKS_SQRT == 88, "ANEURALNETWORKS_SQRT has changed"); |
| static_assert(ANEURALNETWORKS_TILE == 89, "ANEURALNETWORKS_TILE has changed"); |
| static_assert(ANEURALNETWORKS_TOPK_V2 == 90, "ANEURALNETWORKS_TOPK_V2 has changed"); |
| static_assert(ANEURALNETWORKS_TRANSPOSE_CONV_2D == 91, |
| "ANEURALNETWORKS_TRANSPOSE_CONV_2D has changed"); |
| static_assert(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_LSTM == 92, |
| "ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_LSTM has changed"); |
| static_assert(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN == 93, |
| "ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN has changed"); |
| static_assert(ANEURALNETWORKS_RESIZE_NEAREST_NEIGHBOR == 94, |
| "ANEURALNETWORKS_RESIZE_NEAREST_NEIGHBOR has changed"); |
| static_assert(ANEURALNETWORKS_QUANTIZED_LSTM == 95, "ANEURALNETWORKS_QUANTIZED_LSTM has changed"); |
| static_assert(ANEURALNETWORKS_IF == 96, "ANEURALNETWORKS_IF has changed"); |
| static_assert(ANEURALNETWORKS_WHILE == 97, "ANEURALNETWORKS_WHILE has changed"); |
| static_assert(ANEURALNETWORKS_ELU == 98, "ANEURALNETWORKS_ELU has changed"); |
| static_assert(ANEURALNETWORKS_HARD_SWISH == 99, "ANEURALNETWORKS_HARD_SWISH has changed"); |
| static_assert(ANEURALNETWORKS_FILL == 100, "ANEURALNETWORKS_FILL has changed"); |
| static_assert(ANEURALNETWORKS_RANK == 101, "ANEURALNETWORKS_RANK has changed"); |
| static_assert(ANEURALNETWORKS_BATCH_MATMUL == 102, "ANEURALNETWORKS_BATCH_MATMUL has changed"); |
| static_assert(ANEURALNETWORKS_PACK == 103, "ANEURALNETWORKS_PACK has changed"); |
| static_assert(ANEURALNETWORKS_MIRROR_PAD == 104, "ANEURALNETWORKS_MIRROR_PAD has changed"); |
| static_assert(ANEURALNETWORKS_REVERSE == 105, "ANEURALNETWORKS_REVERSE has changed"); |
| static_assert(ANEURALNETWORKS_OEM_OPERATION == 10000, "ANEURALNETWORKS_OEM_OPERATION has changed"); |
| |
| static_assert(ANEURALNETWORKS_FUSED_NONE == 0, "ANEURALNETWORKS_FUSED_NONE has changed"); |
| static_assert(ANEURALNETWORKS_FUSED_RELU == 1, "ANEURALNETWORKS_FUSED_RELU has changed"); |
| static_assert(ANEURALNETWORKS_FUSED_RELU1 == 2, "ANEURALNETWORKS_FUSED_RELU1 has changed"); |
| static_assert(ANEURALNETWORKS_FUSED_RELU6 == 3, "ANEURALNETWORKS_FUSED_RELU6 has changed"); |
| |
| static_assert(ANEURALNETWORKS_PREFER_LOW_POWER == 0, |
| "ANEURALNETWORKS_PREFER_LOW_POWER has changed"); |
| static_assert(ANEURALNETWORKS_PREFER_FAST_SINGLE_ANSWER == 1, |
| "ANEURALNETWORKS_PREFER_FAST_SINGLE_ANSWER has changed"); |
| static_assert(ANEURALNETWORKS_PREFER_SUSTAINED_SPEED == 2, |
| "ANEURALNETWORKS_PREFER_SUSTAINED_SPEED has changed"); |
| |
| static_assert(ANEURALNETWORKS_NO_ERROR == 0, "ANEURALNETWORKS_NO_ERROR has changed"); |
| static_assert(ANEURALNETWORKS_OUT_OF_MEMORY == 1, "ANEURALNETWORKS_OUT_OF_MEMORY has changed"); |
| static_assert(ANEURALNETWORKS_INCOMPLETE == 2, "ANEURALNETWORKS_INCOMPLETE has changed"); |
| static_assert(ANEURALNETWORKS_UNEXPECTED_NULL == 3, "ANEURALNETWORKS_UNEXPECTED_NULL has changed"); |
| static_assert(ANEURALNETWORKS_BAD_DATA == 4, "ANEURALNETWORKS_BAD_DATA has changed"); |
| static_assert(ANEURALNETWORKS_OP_FAILED == 5, "ANEURALNETWORKS_OP_FAILED has changed"); |
| static_assert(ANEURALNETWORKS_BAD_STATE == 6, "ANEURALNETWORKS_BAD_STATE has changed"); |
| static_assert(ANEURALNETWORKS_UNMAPPABLE == 7, "ANEURALNETWORKS_UNMAPPABLE has changed"); |
| static_assert(ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE == 8, |
| "ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE has changed"); |
| static_assert(ANEURALNETWORKS_UNAVAILABLE_DEVICE == 9, |
| "ANEURALNETWORKS_UNAVAILABLE_DEVICE has changed"); |
| static_assert(ANEURALNETWORKS_MISSED_DEADLINE_TRANSIENT == 10, |
| "ANEURALNETWORKS_MISSED_DEADLINE_TRANSIENT has changed"); |
| static_assert(ANEURALNETWORKS_MISSED_DEADLINE_PERSISTENT == 11, |
| "ANEURALNETWORKS_MISSED_DEADLINE_PERSISTENT has changed"); |
| static_assert(ANEURALNETWORKS_RESOURCE_EXHAUSTED_TRANSIENT == 12, |
| "ANEURALNETWORKS_RESOURCE_EXHAUSTED_TRANSIENT has changed"); |
| static_assert(ANEURALNETWORKS_RESOURCE_EXHAUSTED_PERSISTENT == 13, |
| "ANEURALNETWORKS_RESOURCE_EXHAUSTED_PERSISTENT has changed"); |
| static_assert(ANEURALNETWORKS_DEAD_OBJECT == 14, "ANEURALNETWORKS_DEAD_OBJECT has changed"); |
| |
| static_assert(ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES == 128, |
| "ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES has changed"); |
| |
| static_assert(ANEURALNETWORKS_DEVICE_UNKNOWN == 0, "ANEURALNETWORKS_DEVICE_UNKNOWN has changed"); |
| static_assert(ANEURALNETWORKS_DEVICE_OTHER == 1, "ANEURALNETWORKS_DEVICE_OTHER has changed"); |
| static_assert(ANEURALNETWORKS_DEVICE_CPU == 2, "ANEURALNETWORKS_DEVICE_CPU has changed"); |
| static_assert(ANEURALNETWORKS_DEVICE_GPU == 3, "ANEURALNETWORKS_DEVICE_GPU has changed"); |
| static_assert(ANEURALNETWORKS_DEVICE_ACCELERATOR == 4, |
| "ANEURALNETWORKS_DEVICE_ACCELERATOR has changed"); |
| |
| static_assert(ANEURALNETWORKS_DURATION_ON_HARDWARE == 0, |
| "ANEURALNETWORKS_DURATION_ON_HARDWARE has changed"); |
| static_assert(ANEURALNETWORKS_DURATION_IN_DRIVER == 1, |
| "ANEURALNETWORKS_DURATION_IN_DRIVER has changed"); |
| static_assert(ANEURALNETWORKS_FENCED_DURATION_ON_HARDWARE == 2, |
| "ANEURALNETWORKS_FENCED_DURATION_ON_HARDWARE has changed"); |
| static_assert(ANEURALNETWORKS_FENCED_DURATION_IN_DRIVER == 3, |
| "ANEURALNETWORKS_FENCED_DURATION_IN_DRIVER has changed"); |
| |
| // Make sure that the constants are compatible with the values defined in |
| // hardware/interfaces/neuralnetworks/1.0/types.hal. |
| static_assert(static_cast<int32_t>(OperandType::OEM) == ANEURALNETWORKS_OEM_SCALAR, |
| "OEM != ANEURALNETWORKS_OEM"); |
| static_assert(static_cast<int32_t>(OperandType::FLOAT32) == ANEURALNETWORKS_FLOAT32, |
| "FLOAT32 != ANEURALNETWORKS_FLOAT32"); |
| static_assert(static_cast<int32_t>(OperandType::INT32) == ANEURALNETWORKS_INT32, |
| "INT32 != ANEURALNETWORKS_INT32"); |
| static_assert(static_cast<int32_t>(OperandType::UINT32) == ANEURALNETWORKS_UINT32, |
| "UINT32 != ANEURALNETWORKS_UINT32"); |
| static_assert(static_cast<int32_t>(OperandType::TENSOR_OEM_BYTE) == ANEURALNETWORKS_TENSOR_OEM_BYTE, |
| "TENSOR_OEM_BYTE != ANEURALNETWORKS_TENSOR_OEM_BYTE"); |
| static_assert(static_cast<int32_t>(OperandType::TENSOR_FLOAT32) == ANEURALNETWORKS_TENSOR_FLOAT32, |
| "TENSOR_FLOAT32 != ANEURALNETWORKS_TENSOR_FLOAT32"); |
| static_assert(static_cast<int32_t>(OperandType::TENSOR_QUANT8_ASYMM) == |
| ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, |
| "TENSOR_QUANT8_ASYMM != ANEURALNETWORKS_TENSOR_QUANT8_ASYMM"); |
| |
| static_assert(static_cast<int32_t>(OperationType::ADD) == ANEURALNETWORKS_ADD, |
| "OperationType::ADD != ANEURALNETWORKS_ADD"); |
| static_assert(static_cast<int32_t>(OperationType::AVERAGE_POOL_2D) == |
| ANEURALNETWORKS_AVERAGE_POOL_2D, |
| "OperationType::AVERAGE_POOL_2D != ANEURALNETWORKS_AVERAGE_POOL_2D"); |
| static_assert(static_cast<int32_t>(OperationType::CONV_2D) == ANEURALNETWORKS_CONV_2D, |
| "OperationType::CONV_2D != ANEURALNETWORKS_CONV_2D"); |
| static_assert(static_cast<int32_t>(OperationType::DEPTHWISE_CONV_2D) == |
| ANEURALNETWORKS_DEPTHWISE_CONV_2D, |
| "OperationType::DEPTHWISE_CONV_2D != ANEURALNETWORKS_DEPTHWISE_CONV_2D"); |
| static_assert(static_cast<int32_t>(OperationType::DEPTH_TO_SPACE) == ANEURALNETWORKS_DEPTH_TO_SPACE, |
| "OperationType::DEPTH_TO_SPACE != ANEURALNETWORKS_DEPTH_TO_SPACE"); |
| static_assert(static_cast<int32_t>(OperationType::DEQUANTIZE) == ANEURALNETWORKS_DEQUANTIZE, |
| "OperationType::DEQUANTIZE != ANEURALNETWORKS_DEQUANTIZE"); |
| static_assert(static_cast<int32_t>(OperationType::EMBEDDING_LOOKUP) == |
| ANEURALNETWORKS_EMBEDDING_LOOKUP, |
| "OperationType::EMBEDDING_LOOKUP != ANEURALNETWORKS_EMBEDDING_LOOKUP"); |
| static_assert(static_cast<int32_t>(OperationType::FLOOR) == ANEURALNETWORKS_FLOOR, |
| "OperationType::FLOOR != ANEURALNETWORKS_FLOOR"); |
| static_assert(static_cast<int32_t>(OperationType::FULLY_CONNECTED) == |
| ANEURALNETWORKS_FULLY_CONNECTED, |
| "OperationType::FULLY_CONNECTED != ANEURALNETWORKS_FULLY_CONNECTED"); |
| static_assert(static_cast<int32_t>(OperationType::HASHTABLE_LOOKUP) == |
| ANEURALNETWORKS_HASHTABLE_LOOKUP, |
| "OperationType::HASHTABLE_LOOKUP != ANEURALNETWORKS_HASHTABLE_LOOKUP"); |
| static_assert(static_cast<int32_t>(OperationType::L2_NORMALIZATION) == |
| ANEURALNETWORKS_L2_NORMALIZATION, |
| "OperationType::L2_NORMALIZATION != ANEURALNETWORKS_L2_NORMALIZATION"); |
| static_assert(static_cast<int32_t>(OperationType::L2_POOL_2D) == ANEURALNETWORKS_L2_POOL_2D, |
| "OperationType::L2_POOL_2D != ANEURALNETWORKS_L2_POOL_2D"); |
| static_assert(static_cast<int32_t>(OperationType::LOCAL_RESPONSE_NORMALIZATION) == |
| ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, |
| "OperationType::LOCAL_RESPONSE_NORMALIZATION != " |
| "ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION"); |
| static_assert(static_cast<int32_t>(OperationType::LOGISTIC) == ANEURALNETWORKS_LOGISTIC, |
| "OperationType::LOGISTIC != ANEURALNETWORKS_LOGISTIC"); |
| static_assert(static_cast<int32_t>(OperationType::LSH_PROJECTION) == ANEURALNETWORKS_LSH_PROJECTION, |
| "OperationType::LSH_PROJECTION != ANEURALNETWORKS_LSH_PROJECTION"); |
| static_assert(static_cast<int32_t>(OperationType::LSTM) == ANEURALNETWORKS_LSTM, |
| "OperationType::LSTM != ANEURALNETWORKS_LSTM"); |
| static_assert(static_cast<int32_t>(OperationType::MAX_POOL_2D) == ANEURALNETWORKS_MAX_POOL_2D, |
| "OperationType::MAX_POOL_2D != ANEURALNETWORKS_MAX_POOL_2D"); |
| static_assert(static_cast<int32_t>(OperationType::MUL) == ANEURALNETWORKS_MUL, |
| "OperationType::MUL != ANEURALNETWORKS_MUL"); |
| static_assert(static_cast<int32_t>(OperationType::RELU) == ANEURALNETWORKS_RELU, |
| "OperationType::RELU != ANEURALNETWORKS_RELU"); |
| static_assert(static_cast<int32_t>(OperationType::RELU1) == ANEURALNETWORKS_RELU1, |
| "OperationType::RELU1 != ANEURALNETWORKS_RELU1"); |
| static_assert(static_cast<int32_t>(OperationType::RELU6) == ANEURALNETWORKS_RELU6, |
| "OperationType::RELU6 != ANEURALNETWORKS_RELU6"); |
| static_assert(static_cast<int32_t>(OperationType::RESHAPE) == ANEURALNETWORKS_RESHAPE, |
| "OperationType::RESHAPE != ANEURALNETWORKS_RESHAPE"); |
| static_assert(static_cast<int32_t>(OperationType::RESIZE_BILINEAR) == |
| ANEURALNETWORKS_RESIZE_BILINEAR, |
| "OperationType::RESIZE_BILINEAR != ANEURALNETWORKS_RESIZE_BILINEAR"); |
| static_assert(static_cast<int32_t>(OperationType::RNN) == ANEURALNETWORKS_RNN, |
| "OperationType::RNN != ANEURALNETWORKS_RNN"); |
| static_assert(static_cast<int32_t>(OperationType::SOFTMAX) == ANEURALNETWORKS_SOFTMAX, |
| "OperationType::SOFTMAX != ANEURALNETWORKS_SOFTMAX"); |
| static_assert(static_cast<int32_t>(OperationType::SPACE_TO_DEPTH) == ANEURALNETWORKS_SPACE_TO_DEPTH, |
| "OperationType::SPACE_TO_DEPTH != ANEURALNETWORKS_SPACE_TO_DEPTH"); |
| static_assert(static_cast<int32_t>(OperationType::SVDF) == ANEURALNETWORKS_SVDF, |
| "OperationType::SVDF != ANEURALNETWORKS_SVDF"); |
| static_assert(static_cast<int32_t>(OperationType::TANH) == ANEURALNETWORKS_TANH, |
| "OperationType::TANH != ANEURALNETWORKS_TANH"); |
| |
| static_assert(static_cast<int32_t>(FusedActivationFunc::NONE) == ANEURALNETWORKS_FUSED_NONE, |
| "FusedActivationFunc::NONE != ANEURALNETWORKS_FUSED_NONE"); |
| static_assert(static_cast<int32_t>(FusedActivationFunc::RELU) == ANEURALNETWORKS_FUSED_RELU, |
| "FusedActivationFunc::RELU != ANEURALNETWORKS_FUSED_RELU"); |
| static_assert(static_cast<int32_t>(FusedActivationFunc::RELU1) == ANEURALNETWORKS_FUSED_RELU1, |
| "FusedActivationFunc::RELU1 != ANEURALNETWORKS_FUSED_RELU1"); |
| static_assert(static_cast<int32_t>(FusedActivationFunc::RELU6) == ANEURALNETWORKS_FUSED_RELU6, |
| "FusedActivationFunc::RELU6 != ANEURALNETWORKS_FUSED_RELU6"); |
| |
| // Make sure that the constants are compatible with the values defined in |
| // hardware/interfaces/neuralnetworks/1.1/types.hal. |
| static_assert(static_cast<int32_t>(OperationType::BATCH_TO_SPACE_ND) == |
| ANEURALNETWORKS_BATCH_TO_SPACE_ND, |
| "OperationType::BATCH_TO_SPACE_ND != ANEURALNETWORKS_BATCH_TO_SPACE_ND"); |
| static_assert(static_cast<int32_t>(OperationType::DIV) == ANEURALNETWORKS_DIV, |
| "OperationType::DIV != ANEURALNETWORKS_DIV"); |
| static_assert(static_cast<int32_t>(OperationType::MEAN) == ANEURALNETWORKS_MEAN, |
| "OperationType::MEAN != ANEURALNETWORKS_MEAN"); |
| static_assert(static_cast<int32_t>(OperationType::PAD) == ANEURALNETWORKS_PAD, |
| "OperationType::PAD != ANEURALNETWORKS_PAD"); |
| static_assert(static_cast<int32_t>(OperationType::SPACE_TO_BATCH_ND) == |
| ANEURALNETWORKS_SPACE_TO_BATCH_ND, |
| "OperationType::SPACE_TO_BATCH_ND != ANEURALNETWORKS_SPACE_TO_BATCH_ND"); |
| static_assert(static_cast<int32_t>(OperationType::SQUEEZE) == ANEURALNETWORKS_SQUEEZE, |
| "OperationType::SQUEEZE != ANEURALNETWORKS_SQUEEZE"); |
| static_assert(static_cast<int32_t>(OperationType::STRIDED_SLICE) == ANEURALNETWORKS_STRIDED_SLICE, |
| "OperationType::STRIDED_SLICE != ANEURALNETWORKS_STRIDED_SLICE"); |
| static_assert(static_cast<int32_t>(OperationType::SUB) == ANEURALNETWORKS_SUB, |
| "OperationType::SUB != ANEURALNETWORKS_SUB"); |
| static_assert(static_cast<int32_t>(OperationType::TRANSPOSE) == ANEURALNETWORKS_TRANSPOSE, |
| "OperationType::TRANSPOSE != ANEURALNETWORKS_TRANSPOSE"); |
| |
| // Make sure that the constants are compatible with the values defined in |
| // hardware/interfaces/neuralnetworks/1.2/types.hal. |
| static_assert(static_cast<int32_t>(OperandType::BOOL) == ANEURALNETWORKS_BOOL, |
| "BOOL != ANEURALNETWORKS_BOOL"); |
| static_assert(static_cast<int32_t>(OperandType::TENSOR_QUANT16_SYMM) == |
| ANEURALNETWORKS_TENSOR_QUANT16_SYMM, |
| "TENSOR_QUANT16_SYMM != ANEURALNETWORKS_TENSOR_QUANT16_SYMM"); |
| static_assert(static_cast<int32_t>(OperandType::TENSOR_FLOAT16) == ANEURALNETWORKS_TENSOR_FLOAT16, |
| "TENSOR_FLOAT16 != ANEURALNETWORKS_TENSOR_FLOAT16"); |
| static_assert(static_cast<int32_t>(OperandType::TENSOR_BOOL8) == ANEURALNETWORKS_TENSOR_BOOL8, |
| "TENSOR_BOOL8 != ANEURALNETWORKS_TENSOR_BOOL8"); |
| static_assert(static_cast<int32_t>(OperandType::FLOAT16) == ANEURALNETWORKS_FLOAT16, |
| "FLOAT16 != ANEURALNETWORKS_FLOAT16"); |
| static_assert(static_cast<int32_t>(OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) == |
| ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL, |
| "TENSOR_QUANT8_SYMM_PER_CHANNEL != ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL"); |
| static_assert(static_cast<int32_t>(OperandType::TENSOR_QUANT16_ASYMM) == |
| ANEURALNETWORKS_TENSOR_QUANT16_ASYMM, |
| "TENSOR_QUANT16_ASYMM != ANEURALNETWORKS_TENSOR_QUANT16_ASYMM"); |
| static_assert(static_cast<int32_t>(OperandType::TENSOR_QUANT8_SYMM) == |
| ANEURALNETWORKS_TENSOR_QUANT8_SYMM, |
| "TENSOR_QUANT8_SYMM != ANEURALNETWORKS_TENSOR_QUANT8_SYMM"); |
| |
| static_assert(static_cast<int32_t>(OperationType::ABS) == ANEURALNETWORKS_ABS, |
| "OperationType::ABS != ANEURALNETWORKS_ABS"); |
| static_assert(static_cast<int32_t>(OperationType::ARGMAX) == ANEURALNETWORKS_ARGMAX, |
| "OperationType::ARGMAX != ANEURALNETWORKS_ARGMAX"); |
| static_assert(static_cast<int32_t>(OperationType::ARGMIN) == ANEURALNETWORKS_ARGMIN, |
| "OperationType::ARGMIN != ANEURALNETWORKS_ARGMIN"); |
| static_assert(static_cast<int32_t>(OperationType::AXIS_ALIGNED_BBOX_TRANSFORM) == |
| ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM, |
| "OperationType::AXIS_ALIGNED_BBOX_TRANSFORM != " |
| "ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM"); |
| static_assert(static_cast<int32_t>(OperationType::BIDIRECTIONAL_SEQUENCE_LSTM) == |
| ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_LSTM, |
| "OperationType::BIDIRECTIONAL_SEQUENCE_LSTM != " |
| "ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_LSTM"); |
| static_assert( |
| static_cast<int32_t>(OperationType::BIDIRECTIONAL_SEQUENCE_RNN) == |
| ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_RNN, |
| "OperationType::BIDIRECTIONAL_SEQUENCE_RNN != ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_RNN"); |
| static_assert(static_cast<int32_t>(OperationType::BOX_WITH_NMS_LIMIT) == |
| ANEURALNETWORKS_BOX_WITH_NMS_LIMIT, |
| "OperationType::BOX_WITH_NMS_LIMIT != ANEURALNETWORKS_BOX_WITH_NMS_LIMIT"); |
| static_assert(static_cast<int32_t>(OperationType::CAST) == ANEURALNETWORKS_CAST, |
| "OperationType::CAST != ANEURALNETWORKS_CAST"); |
| static_assert(static_cast<int32_t>(OperationType::CHANNEL_SHUFFLE) == |
| ANEURALNETWORKS_CHANNEL_SHUFFLE, |
| "OperationType::CHANNEL_SHUFFLE != ANEURALNETWORKS_CHANNEL_SHUFFLE"); |
| static_assert( |
| static_cast<int32_t>(OperationType::DETECTION_POSTPROCESSING) == |
| ANEURALNETWORKS_DETECTION_POSTPROCESSING, |
| "OperationType::DETECTION_POSTPROCESSING != ANEURALNETWORKS_DETECTION_POSTPROCESSING"); |
| static_assert(static_cast<int32_t>(OperationType::EQUAL) == ANEURALNETWORKS_EQUAL, |
| "OperationType::EQUAL != ANEURALNETWORKS_EQUAL"); |
| static_assert(static_cast<int32_t>(OperationType::EXP) == ANEURALNETWORKS_EXP, |
| "OperationType::EXP != ANEURALNETWORKS_EXP"); |
| static_assert(static_cast<int32_t>(OperationType::EXPAND_DIMS) == ANEURALNETWORKS_EXPAND_DIMS, |
| "OperationType::EXPAND_DIMS != ANEURALNETWORKS_EXPAND_DIMS"); |
| static_assert(static_cast<int32_t>(OperationType::GATHER) == ANEURALNETWORKS_GATHER, |
| "OperationType::GATHER != ANEURALNETWORKS_GATHER"); |
| static_assert(static_cast<int32_t>(OperationType::GENERATE_PROPOSALS) == |
| ANEURALNETWORKS_GENERATE_PROPOSALS, |
| "OperationType::GENERATE_PROPOSALS != ANEURALNETWORKS_GENERATE_PROPOSALS"); |
| static_assert(static_cast<int32_t>(OperationType::GREATER) == ANEURALNETWORKS_GREATER, |
| "OperationType::GREATER != ANEURALNETWORKS_GREATER"); |
| static_assert(static_cast<int32_t>(OperationType::GREATER_EQUAL) == ANEURALNETWORKS_GREATER_EQUAL, |
| "OperationType::GREATER_EQUAL != ANEURALNETWORKS_GREATER_EQUAL"); |
| static_assert(static_cast<int32_t>(OperationType::GROUPED_CONV_2D) == |
| ANEURALNETWORKS_GROUPED_CONV_2D, |
| "OperationType::GROUPED_CONV_2D != ANEURALNETWORKS_GROUPED_CONV_2D"); |
| static_assert(static_cast<int32_t>(OperationType::HEATMAP_MAX_KEYPOINT) == |
| ANEURALNETWORKS_HEATMAP_MAX_KEYPOINT, |
| "OperationType::HEATMAP_MAX_KEYPOINT != ANEURALNETWORKS_HEATMAP_MAX_KEYPOINT"); |
| static_assert(static_cast<int32_t>(OperationType::INSTANCE_NORMALIZATION) == |
| ANEURALNETWORKS_INSTANCE_NORMALIZATION, |
| "OperationType::INSTANCE_NORMALIZATION != ANEURALNETWORKS_INSTANCE_NORMALIZATION"); |
| static_assert(static_cast<int32_t>(OperationType::LESS) == ANEURALNETWORKS_LESS, |
| "OperationType::LESS != ANEURALNETWORKS_LESS"); |
| static_assert(static_cast<int32_t>(OperationType::LESS_EQUAL) == ANEURALNETWORKS_LESS_EQUAL, |
| "OperationType::LESS_EQUAL != ANEURALNETWORKS_LESS_EQUAL"); |
| static_assert(static_cast<int32_t>(OperationType::LOG) == ANEURALNETWORKS_LOG, |
| "OperationType::LOG != ANEURALNETWORKS_LOG"); |
| static_assert(static_cast<int32_t>(OperationType::LOGICAL_AND) == ANEURALNETWORKS_LOGICAL_AND, |
| "OperationType::LOGICAL_AND != ANEURALNETWORKS_LOGICAL_AND"); |
| static_assert(static_cast<int32_t>(OperationType::LOGICAL_NOT) == ANEURALNETWORKS_LOGICAL_NOT, |
| "OperationType::LOGICAL_NOT != ANEURALNETWORKS_LOGICAL_NOT"); |
| static_assert(static_cast<int32_t>(OperationType::LOGICAL_OR) == ANEURALNETWORKS_LOGICAL_OR, |
| "OperationType::LOGICAL_OR != ANEURALNETWORKS_LOGICAL_OR"); |
| static_assert(static_cast<int32_t>(OperationType::LOG_SOFTMAX) == ANEURALNETWORKS_LOG_SOFTMAX, |
| "OperationType::LOG_SOFTMAX != ANEURALNETWORKS_LOG_SOFTMAX"); |
| static_assert(static_cast<int32_t>(OperationType::MAXIMUM) == ANEURALNETWORKS_MAXIMUM, |
| "OperationType::MAXIMUM != ANEURALNETWORKS_MAXIMUM"); |
| static_assert(static_cast<int32_t>(OperationType::MINIMUM) == ANEURALNETWORKS_MINIMUM, |
| "OperationType::MINIMUM != ANEURALNETWORKS_MINIMUM"); |
| static_assert(static_cast<int32_t>(OperationType::NEG) == ANEURALNETWORKS_NEG, |
| "OperationType::NEG != ANEURALNETWORKS_NEG"); |
| static_assert(static_cast<int32_t>(OperationType::NOT_EQUAL) == ANEURALNETWORKS_NOT_EQUAL, |
| "OperationType::NOT_EQUAL != ANEURALNETWORKS_NOT_EQUAL"); |
| static_assert(static_cast<int32_t>(OperationType::PAD_V2) == ANEURALNETWORKS_PAD_V2, |
| "OperationType::PAD_V2 != ANEURALNETWORKS_PAD_V2"); |
| static_assert(static_cast<int32_t>(OperationType::POW) == ANEURALNETWORKS_POW, |
| "OperationType::POW != ANEURALNETWORKS_POW"); |
| static_assert(static_cast<int32_t>(OperationType::PRELU) == ANEURALNETWORKS_PRELU, |
| "OperationType::PRELU != ANEURALNETWORKS_PRELU"); |
| static_assert(static_cast<int32_t>(OperationType::QUANTIZE) == ANEURALNETWORKS_QUANTIZE, |
| "OperationType::QUANTIZE != ANEURALNETWORKS_QUANTIZE"); |
| static_assert(static_cast<int32_t>(OperationType::QUANTIZED_16BIT_LSTM) == |
| ANEURALNETWORKS_QUANTIZED_16BIT_LSTM, |
| "OperationType::QUANTIZED_16BIT_LSTM != ANEURALNETWORKS_QUANTIZED_16BIT_LSTM"); |
| static_assert(static_cast<int32_t>(OperationType::RANDOM_MULTINOMIAL) == |
| ANEURALNETWORKS_RANDOM_MULTINOMIAL, |
| "OperationType::RANDOM_MULTINOMIAL != ANEURALNETWORKS_RANDOM_MULTINOMIAL"); |
| static_assert(static_cast<int32_t>(OperationType::REDUCE_ALL) == ANEURALNETWORKS_REDUCE_ALL, |
| "OperationType::REDUCE_ALL != ANEURALNETWORKS_REDUCE_ALL"); |
| static_assert(static_cast<int32_t>(OperationType::REDUCE_ANY) == ANEURALNETWORKS_REDUCE_ANY, |
| "OperationType::REDUCE_ANY != ANEURALNETWORKS_REDUCE_ANY"); |
| static_assert(static_cast<int32_t>(OperationType::REDUCE_MAX) == ANEURALNETWORKS_REDUCE_MAX, |
| "OperationType::REDUCE_MAX != ANEURALNETWORKS_REDUCE_MAX"); |
| static_assert(static_cast<int32_t>(OperationType::REDUCE_MIN) == ANEURALNETWORKS_REDUCE_MIN, |
| "OperationType::REDUCE_MIN != ANEURALNETWORKS_REDUCE_MIN"); |
| static_assert(static_cast<int32_t>(OperationType::REDUCE_PROD) == ANEURALNETWORKS_REDUCE_PROD, |
| "OperationType::REDUCE_PROD != ANEURALNETWORKS_REDUCE_PROD"); |
| static_assert(static_cast<int32_t>(OperationType::REDUCE_SUM) == ANEURALNETWORKS_REDUCE_SUM, |
| "OperationType::REDUCE_SUM != ANEURALNETWORKS_REDUCE_SUM"); |
| static_assert(static_cast<int32_t>(OperationType::ROI_ALIGN) == ANEURALNETWORKS_ROI_ALIGN, |
| "OperationType::ROI_ALIGN != ANEURALNETWORKS_ROI_ALIGN"); |
| static_assert(static_cast<int32_t>(OperationType::ROI_POOLING) == ANEURALNETWORKS_ROI_POOLING, |
| "OperationType::ROI_POOLING != ANEURALNETWORKS_ROI_POOLING"); |
| static_assert(static_cast<int32_t>(OperationType::RSQRT) == ANEURALNETWORKS_RSQRT, |
| "OperationType::RSQRT != ANEURALNETWORKS_RSQRT"); |
| static_assert(static_cast<int32_t>(OperationType::SELECT) == ANEURALNETWORKS_SELECT, |
| "OperationType::SELECT != ANEURALNETWORKS_SELECT"); |
| static_assert(static_cast<int32_t>(OperationType::SIN) == ANEURALNETWORKS_SIN, |
| "OperationType::SIN != ANEURALNETWORKS_SIN"); |
| static_assert(static_cast<int32_t>(OperationType::SLICE) == ANEURALNETWORKS_SLICE, |
| "OperationType::SLICE != ANEURALNETWORKS_SLICE"); |
| static_assert(static_cast<int32_t>(OperationType::SPLIT) == ANEURALNETWORKS_SPLIT, |
| "OperationType::SPLIT != ANEURALNETWORKS_SPLIT"); |
| static_assert(static_cast<int32_t>(OperationType::SQRT) == ANEURALNETWORKS_SQRT, |
| "OperationType::SQRT != ANEURALNETWORKS_SQRT"); |
| static_assert(static_cast<int32_t>(OperationType::TILE) == ANEURALNETWORKS_TILE, |
| "OperationType::TILE != ANEURALNETWORKS_TILE"); |
| static_assert(static_cast<int32_t>(OperationType::TOPK_V2) == ANEURALNETWORKS_TOPK_V2, |
| "OperationType::TOPK_V2 != ANEURALNETWORKS_TOPK_V2"); |
| static_assert(static_cast<int32_t>(OperationType::TRANSPOSE_CONV_2D) == |
| ANEURALNETWORKS_TRANSPOSE_CONV_2D, |
| "OperationType::TRANSPOSE_CONV_2D != ANEURALNETWORKS_TRANSPOSE_CONV_2D"); |
| static_assert(static_cast<int32_t>(OperationType::UNIDIRECTIONAL_SEQUENCE_LSTM) == |
| ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_LSTM, |
| "OperationType::UNIDIRECTIONAL_SEQUENCE_LSTM != " |
| "ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_LSTM"); |
| static_assert(static_cast<int32_t>(OperationType::UNIDIRECTIONAL_SEQUENCE_RNN) == |
| ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN, |
| "OperationType::UNIDIRECTIONAL_SEQUENCE_RNN != " |
| "ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN"); |
| static_assert(static_cast<int32_t>(OperationType::RESIZE_NEAREST_NEIGHBOR) == |
| ANEURALNETWORKS_RESIZE_NEAREST_NEIGHBOR, |
| "OperationType::RESIZE_NEAREST_NEIGHBOR != ANEURALNETWORKS_RESIZE_NEAREST_NEIGHBOR"); |
| static_assert(static_cast<int32_t>(OperationType::QUANTIZED_LSTM) == ANEURALNETWORKS_QUANTIZED_LSTM, |
| "OperationType::QUANTIZED_LSTM != ANEURALNETWORKS_QUANTIZED_LSTM"); |
| static_assert(static_cast<int32_t>(OperationType::IF) == ANEURALNETWORKS_IF, |
| "OperationType::IF != ANEURALNETWORKS_IF"); |
| static_assert(static_cast<int32_t>(OperationType::WHILE) == ANEURALNETWORKS_WHILE, |
| "OperationType::WHILE != ANEURALNETWORKS_WHILE"); |
| static_assert(static_cast<int32_t>(OperationType::ELU) == ANEURALNETWORKS_ELU, |
| "OperationType::ELU != ANEURALNETWORKS_ELU"); |
| static_assert(static_cast<int32_t>(OperationType::HARD_SWISH) == ANEURALNETWORKS_HARD_SWISH, |
| "OperationType::HARD_SWISH != ANEURALNETWORKS_HARD_SWISH"); |
| static_assert(static_cast<int32_t>(OperationType::FILL) == ANEURALNETWORKS_FILL, |
| "OperationType::FILL != ANEURALNETWORKS_FILL"); |
| static_assert(static_cast<int32_t>(OperationType::RANK) == ANEURALNETWORKS_RANK, |
| "OperationType::RANK != ANEURALNETWORKS_RANK"); |
| static_assert(static_cast<int32_t>(OperationType::BATCH_MATMUL) == ANEURALNETWORKS_BATCH_MATMUL, |
| "OperationType::BATCH_MATMUL != ANEURALNETWORKS_BATCH_MATMUL"); |
| static_assert(static_cast<int32_t>(OperationType::PACK) == ANEURALNETWORKS_PACK, |
| "OperationType::PACK != ANEURALNETWORKS_PACK"); |
| static_assert(static_cast<int32_t>(OperationType::MIRROR_PAD) == ANEURALNETWORKS_MIRROR_PAD, |
| "OperationType::MIRROR_PAD != ANEURALNETWORKS_MIRROR_PAD"); |
| static_assert(static_cast<int32_t>(OperationType::REVERSE) == ANEURALNETWORKS_REVERSE, |
| "OperationType::REVERSE != ANEURALNETWORKS_REVERSE"); |
| |
| static_assert(static_cast<int32_t>(DeviceType::OTHER) == ANEURALNETWORKS_DEVICE_OTHER, |
| "DeviceType::OTHER != ANEURALNETWORKS_DEVICE_OTHER"); |
| static_assert(static_cast<int32_t>(DeviceType::CPU) == ANEURALNETWORKS_DEVICE_CPU, |
| "DeviceType::CPU != ANEURALNETWORKS_DEVICE_CPU"); |
| static_assert(static_cast<int32_t>(DeviceType::GPU) == ANEURALNETWORKS_DEVICE_GPU, |
| "DeviceType::GPU != ANEURALNETWORKS_DEVICE_GPU"); |
| static_assert(static_cast<int32_t>(DeviceType::ACCELERATOR) == ANEURALNETWORKS_DEVICE_ACCELERATOR, |
| "DeviceType::ACCELERATOR != ANEURALNETWORKS_DEVICE_ACCELERATOR"); |
| |
| // Make sure that the constants are compatible with the values defined in |
| // hardware/interfaces/neuralnetworks/1.3/types.hal. |
| static_assert(android::nn::convertToCanonicalPriority(ANEURALNETWORKS_PRIORITY_LOW) == |
| Priority::LOW, |
| "ANEURALNETWORKS_PRIORITY_LOW does not map to Priority::LOW"); |
| static_assert(android::nn::convertToCanonicalPriority(ANEURALNETWORKS_PRIORITY_MEDIUM) == |
| Priority::MEDIUM, |
| "ANEURALNETWORKS_PRIORITY_MEDIUM does not map to Priority::MEDIUM"); |
| static_assert(android::nn::convertToCanonicalPriority(ANEURALNETWORKS_PRIORITY_HIGH) == |
| Priority::HIGH, |
| "ANEURALNETWORKS_PRIORITY_HIGH does not map to Priority::HIGH"); |
| |
| // Asserts for ANeuralNetworksOperandType memory layout |
| static_assert(offsetof(ANeuralNetworksOperandType, type) == 0, |
| "ANeuralNetworksOperandType.type offset != 0"); |
| static_assert(offsetof(ANeuralNetworksOperandType, dimensionCount) == 4, |
| "ANeuralNetworksOperandType.dimensionCount offset != 4"); |
| static_assert(offsetof(ANeuralNetworksOperandType, dimensions) == 8, |
| "ANeuralNetworksOperandType.dimensions offset != 8"); |
| static_assert(offsetof(ANeuralNetworksOperandType, scale) == 8 + sizeof(void*), |
| "ANeuralNetworksOperandType.scale offset != 8 + sizeof(void*)"); |
| static_assert(offsetof(ANeuralNetworksOperandType, zeroPoint) == 12 + sizeof(void*), |
| "ANeuralNetworksOperandType.zeroPoint offset != 12 + sizeof(void*)"); |
| static_assert(sizeof(ANeuralNetworksOperandType) == 16 + sizeof(void*), |
| "ANeuralNetworksOperandType size changed"); |
| static_assert(alignof(ANeuralNetworksOperandType) == alignof(void*), |
| "ANeuralNetworksOperandType alignment changed"); |
| |
| // Asserts for ANeuralNetworksSymmPerChannelQuantParams memory layout |
| static_assert(offsetof(ANeuralNetworksSymmPerChannelQuantParams, channelDim) == 0, |
| "ANeuralNetworksSymmPerChannelQuantParams.channelDim offset != 4 + sizeof(void*)"); |
| static_assert(offsetof(ANeuralNetworksSymmPerChannelQuantParams, scaleCount) == 4, |
| "ANeuralNetworksSymmPerChannelQuantParams.scaleCount offset != 0"); |
| static_assert(offsetof(ANeuralNetworksSymmPerChannelQuantParams, scales) == 8, |
| "ANeuralNetworksSymmPerChannelQuantParams.scales offset != 4"); |
| static_assert(sizeof(ANeuralNetworksSymmPerChannelQuantParams) == 8 + sizeof(void*), |
| "ANeuralNetworksSymmPerChannelQuantParams size != 8 + sizeof(void*)"); |
| static_assert(alignof(ANeuralNetworksSymmPerChannelQuantParams) == alignof(void*), |
| "ANeuralNetworksOperandType alignment changed"); |
| |
| // Asserts for compilation caching |
| static_assert(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN == 32, |
| "ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN has changed"); |
| static_assert(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN == kByteSizeOfCacheToken, |
| "ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN != kByteSizeOfCacheToken"); |
| |
| // Asserts for compilation priority |
| static_assert(ANEURALNETWORKS_PRIORITY_LOW == 90, "ANEURALNETWORKS_PRIORITY_LOW has changed"); |
| static_assert(ANEURALNETWORKS_PRIORITY_MEDIUM == 100, |
| "ANEURALNETWORKS_PRIORITY_MEDIUM has changed"); |
| static_assert(ANEURALNETWORKS_PRIORITY_HIGH == 110, "ANEURALNETWORKS_PRIORITY_HIGH has changed"); |
| static_assert(ANEURALNETWORKS_PRIORITY_DEFAULT == ANEURALNETWORKS_PRIORITY_MEDIUM, |
| "ANEURALNETWORKS_PRIORITY_DEFAULT has changed"); |
| |
| // Asserts for feature levels |
| static_assert(ANEURALNETWORKS_FEATURE_LEVEL_1 == 27, "ANEURALNETWORKS_FEATURE_LEVEL_1 has changed"); |
| static_assert(ANEURALNETWORKS_FEATURE_LEVEL_2 == 28, "ANEURALNETWORKS_FEATURE_LEVEL_2 has changed"); |
| static_assert(ANEURALNETWORKS_FEATURE_LEVEL_3 == 29, "ANEURALNETWORKS_FEATURE_LEVEL_3 has changed"); |
| static_assert(ANEURALNETWORKS_FEATURE_LEVEL_4 == 30, "ANEURALNETWORKS_FEATURE_LEVEL_4 has changed"); |
| static_assert(ANEURALNETWORKS_FEATURE_LEVEL_5 == 31, "ANEURALNETWORKS_FEATURE_LEVEL_5 has changed"); |
| static_assert(ANEURALNETWORKS_FEATURE_LEVEL_6 == 1000006, |
| "ANEURALNETWORKS_FEATURE_LEVEL_6 has changed"); |
| static_assert(ANEURALNETWORKS_FEATURE_LEVEL_7 == 1000007, |
| "ANEURALNETWORKS_FEATURE_LEVEL_7 has changed"); |
| static_assert(ANEURALNETWORKS_FEATURE_LEVEL_8 == 1000008, |
| "ANEURALNETWORKS_FEATURE_LEVEL_8 has changed"); |
| |
| #ifdef NN_COMPATIBILITY_LIBRARY_BUILD |
| |
| static_assert(sizeof(SL_ANeuralNetworksPerformanceInfo) == sizeof(float) * 2, |
| "SL_ANeuralNetworksPerformanceInfo size changed"); |
| static_assert(sizeof(SL_ANeuralNetworksOperandPerformanceInfo) == |
| sizeof(float) * 2 + sizeof(int32_t), |
| "SL_ANeuralNetworksOperandPerformanceInfo size changed"); |
| static_assert(sizeof(SL_ANeuralNetworksExtensionOperandTypeInformation) == 8, |
| "SL_ANeuralNetworksExtensionOperandTypeInformation size changed"); |
| |
| static_assert(SL_ANEURALNETWORKS_CAPABILITIES_PERFORMANCE_RELAXED_SCALAR == 0, |
| "SL_ANEURALNETWORKS_CAPABILITIES_PERFORMANCE_RELAXED_SCALAR has changed"); |
| static_assert(SL_ANEURALNETWORKS_CAPABILITIES_PERFORMANCE_RELAXED_TENSOR == 1, |
| "SL_ANEURALNETWORKS_CAPABILITIES_PERFORMANCE_RELAXED_TENSOR has changed"); |
| static_assert(SL_ANEURALNETWORKS_CAPABILITIES_PERFORMANCE_IF == 2, |
| "SL_ANEURALNETWORKS_CAPABILITIES_PERFORMANCE_IF has changed"); |
| static_assert(SL_ANEURALNETWORKS_CAPABILITIES_PERFORMANCE_WHILE == 3, |
| "SL_ANEURALNETWORKS_CAPABILITIES_PERFORMANCE_WHILE has changed"); |
| |
| #endif // NN_COMPATIBILITY_LIBRARY_BUILD |
| |
| int ANeuralNetworks_getDeviceCount(uint32_t* numDevices) { |
| if (numDevices == nullptr) { |
| LOG(ERROR) << "ANeuralNetworks_getDeviceCount passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| *numDevices = DeviceManager::get()->getDrivers().size(); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ANeuralNetworks_getDevice(uint32_t devIndex, ANeuralNetworksDevice** device) { |
| if (device == nullptr) { |
| LOG(ERROR) << "ANeuralNetworks_getDevice passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| const std::vector<std::shared_ptr<Device>>& devices = DeviceManager::get()->getDrivers(); |
| if (devIndex >= devices.size()) { |
| LOG(ERROR) << "ANeuralNetworks_getDevice passed an invalid device index"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| *device = reinterpret_cast<ANeuralNetworksDevice*>(devices.at(devIndex).get()); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ANeuralNetworksDevice_getName(const ANeuralNetworksDevice* device, const char** name) { |
| if (device == nullptr || name == nullptr) { |
| LOG(ERROR) << "ANeuralNetworksDevice_getName passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| const Device* d = reinterpret_cast<const Device*>(device); |
| *name = d->getName().c_str(); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ANeuralNetworksDevice_getVersion(const ANeuralNetworksDevice* device, const char** version) { |
| if (device == nullptr || version == nullptr) { |
| LOG(ERROR) << "ANeuralNetworksDevice_getVersion passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| const Device* d = reinterpret_cast<const Device*>(device); |
| *version = d->getVersionString().c_str(); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ANeuralNetworksDevice_getType(const ANeuralNetworksDevice* device, int32_t* type) { |
| if (device == nullptr || type == nullptr) { |
| LOG(ERROR) << "ANeuralNetworksDevice_getType passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| const Device* d = reinterpret_cast<const Device*>(device); |
| int32_t dType = d->getType(); |
| if (dType < 0) { |
| return ANEURALNETWORKS_OP_FAILED; |
| } |
| *type = d->getType(); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ANeuralNetworksDevice_getFeatureLevel(const ANeuralNetworksDevice* device, |
| int64_t* featureLevel) { |
| if (device == nullptr || featureLevel == nullptr) { |
| LOG(ERROR) << "ANeuralNetworksDevice_getFeatureLevel passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| Device* d = reinterpret_cast<Device*>(const_cast<ANeuralNetworksDevice*>(device)); |
| int64_t dFeatureLevel = DeviceManager::versionToFeatureLevel(d->getFeatureLevel().level); |
| if (dFeatureLevel < 0) { |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| *featureLevel = std::min(ANeuralNetworks_getRuntimeFeatureLevel(), dFeatureLevel); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ANeuralNetworksDevice_wait(const ANeuralNetworksDevice* device) { |
| if (device == nullptr) { |
| LOG(ERROR) << "ANeuralNetworksDevice_wait passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| const Device* d = reinterpret_cast<const Device*>(device); |
| return d->wait(); |
| } |
| |
| int ANeuralNetworksModel_getSupportedOperationsForDevices( |
| const ANeuralNetworksModel* model, const ANeuralNetworksDevice* const* devices, |
| uint32_t numDevices, bool* supportedOps) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksModel_getSupportedOperationsForDevices"); |
| if (model == nullptr || devices == nullptr || supportedOps == nullptr) { |
| LOG(ERROR) << "ANeuralNetworksModel_getSupportedOperationsForDevices passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| if (numDevices == 0) { |
| LOG(ERROR) << "ANeuralNetworksModel_getSupportedOperationsForDevices passed an empty " |
| "device list"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| const ModelBuilder* m = reinterpret_cast<const ModelBuilder*>(model); |
| if (!m->isFinished() || !m->isValid()) { |
| LOG(ERROR) << "ANeuralNetworksModel_getSupportedOperationsForDevices passed an unfinished " |
| "or invalid Model"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| |
| const Model canonicalModel = m->makeModel(); |
| const std::vector<uint32_t>& opMap = m->getSortedOperationMapping(); |
| // init the output array to false for all the operations. |
| std::fill(supportedOps, supportedOps + opMap.size(), false); |
| for (uint32_t i = 0; i < numDevices; i++) { |
| if (devices[i] == nullptr) { |
| LOG(ERROR) << "ANeuralNetworksModel_getSupportedOperationsForDevices passed a nullptr " |
| "as a device"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| for (uint32_t j = i + 1; j < numDevices; j++) { |
| if (devices[i] == devices[j]) { |
| LOG(ERROR) << "ANeuralNetworksModel_getSupportedOperationsForDevices passed " |
| "duplicate devices"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| } |
| |
| Device* d = reinterpret_cast<Device*>(const_cast<ANeuralNetworksDevice*>(devices[i])); |
| const MetaModel metaModel(canonicalModel, DeviceManager::get()->strictSlicing()); |
| const std::vector<bool> supportsByDevice = d->getSupportedOperations(metaModel); |
| for (uint32_t j = 0; j < supportsByDevice.size(); j++) { |
| uint32_t originalIdx = opMap[j]; |
| supportedOps[originalIdx] |= supportsByDevice[j]; |
| } |
| } |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ANeuralNetworksCompilation_createForDevices(ANeuralNetworksModel* model, |
| const ANeuralNetworksDevice* const* devices, |
| uint32_t numDevices, |
| ANeuralNetworksCompilation** compilation) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksCompilation_createForDevices"); |
| if (model == nullptr || devices == nullptr || compilation == nullptr) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_createForDevices passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| |
| if (numDevices == 0) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_createForDevices passed an empty device list"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| std::vector<std::shared_ptr<Device>> selectedDevices; |
| for (uint32_t i = 0; i < numDevices; i++) { |
| if (devices[i] == nullptr) { |
| LOG(ERROR) |
| << "ANeuralNetworksCompilation_createForDevices passed a nullptr as a device"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| for (uint32_t j = i + 1; j < numDevices; j++) { |
| if (devices[i] == devices[j]) { |
| LOG(ERROR) |
| << "ANeuralNetworksCompilation_createForDevices passed duplicate devices"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| } |
| for (auto& device : DeviceManager::get()->getDrivers()) { |
| if (device.get() == reinterpret_cast<const Device*>(devices[i])) { |
| // Find a match |
| selectedDevices.push_back(device); |
| break; |
| } |
| } |
| } |
| |
| if (selectedDevices.size() != numDevices) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_createForDevices passed an invalid device set"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model); |
| CompilationBuilder* c = nullptr; |
| // No CPU fallback when user specifies the list of devices manually. |
| int result = m->createCompilation(&c, selectedDevices, /* explicitDeviceList */ true); |
| *compilation = reinterpret_cast<ANeuralNetworksCompilation*>(c); |
| return result; |
| } |
| |
| int ANeuralNetworksExecution_compute(ANeuralNetworksExecution* execution) { |
| NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksExecution_compute"); |
| if (!execution) { |
| LOG(ERROR) << "ANeuralNetworksExecution_compute passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| // TODO validate the rest |
| |
| ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution); |
| return r->computeSynchronously(); |
| } |
| |
| int ANeuralNetworksExecution_setMeasureTiming(ANeuralNetworksExecution* execution, bool measure) { |
| NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksExecution_setMeasureTiming"); |
| if (!execution) { |
| LOG(ERROR) << "ANeuralNetworksExecution_setMeasureTiming passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution); |
| return r->setMeasureTiming(measure); |
| } |
| |
| int ANeuralNetworksExecution_getDuration(const ANeuralNetworksExecution* execution, |
| int32_t durationCode, uint64_t* duration) { |
| NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksExecution_getDuration"); |
| if (!execution || !duration) { |
| LOG(ERROR) << "ANeuralNetworksExecution_getDuration passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| switch (durationCode) { |
| case ANEURALNETWORKS_DURATION_ON_HARDWARE: |
| case ANEURALNETWORKS_DURATION_IN_DRIVER: |
| case ANEURALNETWORKS_FENCED_DURATION_ON_HARDWARE: |
| case ANEURALNETWORKS_FENCED_DURATION_IN_DRIVER: |
| break; |
| default: |
| LOG(ERROR) << "ANeuralNetworksExecution_getDuration passed a bad durationCode " |
| << durationCode; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| const ExecutionBuilder* r = reinterpret_cast<const ExecutionBuilder*>(execution); |
| return r->getDuration(durationCode, duration); |
| } |
| |
| int ANeuralNetworksBurst_create(ANeuralNetworksCompilation* compilation, |
| ANeuralNetworksBurst** burst) { |
| NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksBurst_create"); |
| if (!compilation || !burst) { |
| LOG(ERROR) << "ANeuralNetworksBurst_create passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| |
| CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(compilation); |
| BurstBuilder* b = nullptr; |
| int result = c->createBurst(&b); |
| *burst = reinterpret_cast<ANeuralNetworksBurst*>(b); |
| return result; |
| } |
| |
| void ANeuralNetworksBurst_free(ANeuralNetworksBurst* burst) { |
| NNTRACE_RT(NNTRACE_PHASE_TERMINATION, "ANeuralNetworksBurst_free"); |
| // No validation. Free of nullptr is valid. |
| BurstBuilder* b = reinterpret_cast<BurstBuilder*>(burst); |
| delete b; |
| } |
| |
| int ANeuralNetworksExecution_burstCompute(ANeuralNetworksExecution* execution, |
| ANeuralNetworksBurst* burst) { |
| NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksExecution_burstCompute"); |
| if (!execution || !burst) { |
| LOG(ERROR) << "ANeuralNetworksExecution_burstCompute passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| |
| ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution); |
| BurstBuilder* b = reinterpret_cast<BurstBuilder*>(burst); |
| |
| if (r->getCompilation() != b->getCompilation()) { |
| LOG(ERROR) << "ANeuralNetworksBurst and ANeuralNetworksExecution " |
| "used in ANeuralNetworksExecution_burstCompute must " |
| "originate from the same ANeuralNetworksCompilation"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| const bool locked = b->tryLock(); |
| if (!locked) { |
| LOG(ERROR) << "ANeuralNetworksBurst is already being used in another " |
| "call to ANeuralNetworksExecution_burstCompute"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| |
| const int n = r->burstCompute(b); |
| b->unlock(); |
| |
| return n; |
| } |
| |
| int ANeuralNetworksMemoryDesc_create(ANeuralNetworksMemoryDesc** desc) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksMemoryDesc_create"); |
| if (desc != nullptr) { |
| *desc = nullptr; |
| } |
| if (!desc) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_create passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| auto mb = std::make_unique<MemoryBuilder>(); |
| *desc = reinterpret_cast<ANeuralNetworksMemoryDesc*>(mb.release()); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| void ANeuralNetworksMemoryDesc_free(ANeuralNetworksMemoryDesc* desc) { |
| NNTRACE_RT(NNTRACE_PHASE_TERMINATION, "ANeuralNetworksMemoryDesc_free"); |
| // No validation. Free of nullptr is valid. |
| MemoryBuilder* mb = reinterpret_cast<MemoryBuilder*>(desc); |
| delete mb; |
| } |
| |
| int ANeuralNetworksMemoryDesc_addInputRole(ANeuralNetworksMemoryDesc* desc, |
| const ANeuralNetworksCompilation* compilation, |
| uint32_t index, float frequency) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksMemoryDesc_addInputRole"); |
| if (!desc || !compilation) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_addInputRole passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| MemoryBuilder* mb = reinterpret_cast<MemoryBuilder*>(desc); |
| const CompilationBuilder* c = reinterpret_cast<const CompilationBuilder*>(compilation); |
| return mb->addRole(*c, IOType::INPUT, index, frequency); |
| } |
| |
| int ANeuralNetworksMemoryDesc_addOutputRole(ANeuralNetworksMemoryDesc* desc, |
| const ANeuralNetworksCompilation* compilation, |
| uint32_t index, float frequency) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksMemoryDesc_addOutputRole"); |
| if (!desc || !compilation) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_addOutputRole passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| MemoryBuilder* mb = reinterpret_cast<MemoryBuilder*>(desc); |
| const CompilationBuilder* c = reinterpret_cast<const CompilationBuilder*>(compilation); |
| return mb->addRole(*c, IOType::OUTPUT, index, frequency); |
| } |
| |
| int ANeuralNetworksMemoryDesc_setDimensions(ANeuralNetworksMemoryDesc* desc, uint32_t rank, |
| const uint32_t* dimensions) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksMemoryDesc_setDimensions"); |
| if (!desc || (!dimensions && rank > 0)) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_setDimensions passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| const std::vector<uint32_t> dims(dimensions, dimensions + rank); |
| MemoryBuilder* mb = reinterpret_cast<MemoryBuilder*>(desc); |
| return mb->setDimensions(dims); |
| } |
| |
| int ANeuralNetworksMemoryDesc_finish(ANeuralNetworksMemoryDesc* desc) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksMemoryDesc_finish"); |
| if (!desc) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_finish passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| MemoryBuilder* mb = reinterpret_cast<MemoryBuilder*>(desc); |
| return mb->finish(); |
| } |
| |
| int ANeuralNetworksMemory_createFromDesc(const ANeuralNetworksMemoryDesc* desc, |
| ANeuralNetworksMemory** memory) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksMemory_createFromDesc"); |
| if (memory != nullptr) { |
| *memory = nullptr; |
| } |
| if (!desc || !memory) { |
| LOG(ERROR) << "ANeuralNetworksMemory_createFromDesc passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| const MemoryBuilder* mb = reinterpret_cast<const MemoryBuilder*>(desc); |
| auto [n, m] = mb->allocate(); |
| if (n != ANEURALNETWORKS_NO_ERROR) { |
| return n; |
| } |
| *memory = reinterpret_cast<ANeuralNetworksMemory*>(m.release()); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ANeuralNetworksMemory_copy(const ANeuralNetworksMemory* src, const ANeuralNetworksMemory* dst) { |
| NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksMemory_copy"); |
| if (!src || !dst) { |
| LOG(ERROR) << "ANeuralNetworksMemory_copy passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| const RuntimeMemory* s = reinterpret_cast<const RuntimeMemory*>(src); |
| const RuntimeMemory* d = reinterpret_cast<const RuntimeMemory*>(dst); |
| return RuntimeMemory::copy(*s, *d); |
| } |
| |
| int ANeuralNetworksMemory_createFromFd(size_t size, int prot, int fd, size_t offset, |
| ANeuralNetworksMemory** memory) { |
| NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksMemory_createFromFd"); |
| if (memory != nullptr) { |
| *memory = nullptr; |
| } |
| if (!memory) { |
| LOG(ERROR) << "ANeuralNetworksMemory_createFromFd passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| int n = ANEURALNETWORKS_NO_ERROR; |
| std::unique_ptr<MemoryFd> m; |
| std::tie(n, m) = MemoryFd::create(size, prot, fd, offset); |
| if (n != ANEURALNETWORKS_NO_ERROR) { |
| return n; |
| } |
| *memory = reinterpret_cast<ANeuralNetworksMemory*>(m.release()); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ANeuralNetworksMemory_createFromAHardwareBuffer(const AHardwareBuffer* ahwb, |
| ANeuralNetworksMemory** memory) { |
| NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksMemory_createFromAHardwareBuffer"); |
| if (memory != nullptr) { |
| *memory = nullptr; |
| } |
| if (!ahwb || !memory) { |
| LOG(ERROR) << "ANeuralNetworksMemory_createFromAHardwareBuffer passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| int n = ANEURALNETWORKS_NO_ERROR; |
| std::unique_ptr<MemoryAHWB> m; |
| std::tie(n, m) = MemoryAHWB::create(*ahwb); |
| if (n != ANEURALNETWORKS_NO_ERROR) { |
| return n; |
| } |
| *memory = reinterpret_cast<ANeuralNetworksMemory*>(m.release()); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| void ANeuralNetworksMemory_free(ANeuralNetworksMemory* memory) { |
| NNTRACE_RT(NNTRACE_PHASE_TERMINATION, "ANeuralNetworksMemory_free"); |
| // No validation. Free of nullptr is valid. |
| RuntimeMemory* m = reinterpret_cast<RuntimeMemory*>(memory); |
| delete m; |
| } |
| |
| int ANeuralNetworksModel_create(ANeuralNetworksModel** model) { |
| NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_create"); |
| initVLogMask(); |
| if (!model) { |
| LOG(ERROR) << "ANeuralNetworksModel_create passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ModelBuilder* m = new (std::nothrow) ModelBuilder(); |
| if (m == nullptr) { |
| *model = nullptr; |
| return ANEURALNETWORKS_OUT_OF_MEMORY; |
| } |
| *model = reinterpret_cast<ANeuralNetworksModel*>(m); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| void ANeuralNetworksModel_free(ANeuralNetworksModel* model) { |
| NNTRACE_RT(NNTRACE_PHASE_TERMINATION, "ANeuralNetworksModel_free"); |
| // No validation. Free of nullptr is valid. |
| ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model); |
| delete m; |
| } |
| |
| int ANeuralNetworksModel_finish(ANeuralNetworksModel* model) { |
| NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_finish"); |
| if (!model) { |
| LOG(ERROR) << "ANeuralNetworksModel_finish passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model); |
| return m->finish(); |
| } |
| |
| int ANeuralNetworksModel_addOperand(ANeuralNetworksModel* model, |
| const ANeuralNetworksOperandType* type) { |
| NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_addOperand"); |
| if (!model || !type) { |
| LOG(ERROR) << "ANeuralNetworksModel_addOperand passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model); |
| return m->addOperand(*type); |
| } |
| |
| int ANeuralNetworksModel_setOperandValue(ANeuralNetworksModel* model, int32_t index, |
| const void* buffer, size_t length) { |
| NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_setOperandValue"); |
| if (!model || (!buffer && length != 0)) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandValue passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model); |
| return m->setOperandValue(index, buffer, length); |
| } |
| |
| int ANeuralNetworksModel_setOperandValueFromMemory(ANeuralNetworksModel* model, int32_t index, |
| const ANeuralNetworksMemory* memory, |
| size_t offset, size_t length) { |
| NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_setOperandValueFromMemory"); |
| if (!model || !memory) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandValue passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| const RuntimeMemory* mem = reinterpret_cast<const RuntimeMemory*>(memory); |
| ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model); |
| return m->setOperandValueFromMemory(index, mem, offset, length); |
| } |
| |
| int ANeuralNetworksModel_setOperandValueFromModel(ANeuralNetworksModel* model, int32_t index, |
| const ANeuralNetworksModel* value) { |
| NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_setOperandValueFromModel"); |
| if (!model || !value) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromModel passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| const ModelBuilder* val = reinterpret_cast<const ModelBuilder*>(value); |
| ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model); |
| return m->setOperandValueFromModel(index, val); |
| } |
| |
| int ANeuralNetworksModel_addOperation(ANeuralNetworksModel* model, |
| ANeuralNetworksOperationType type, uint32_t inputCount, |
| const uint32_t* inputs, uint32_t outputCount, |
| const uint32_t* outputs) { |
| NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_addOperation"); |
| if (!model || !inputs || !outputs) { |
| LOG(ERROR) << "ANeuralNetworksModel_addOperation passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model); |
| return m->addOperation(type, inputCount, inputs, outputCount, outputs); |
| } |
| |
| int ANeuralNetworksModel_setOperandSymmPerChannelQuantParams( |
| ANeuralNetworksModel* model, int32_t index, |
| const ANeuralNetworksSymmPerChannelQuantParams* channelQuant) { |
| NNTRACE_RT(NNTRACE_PHASE_PREPARATION, |
| "ANeuralNetworksModel_setOperandSymmPerChannelQuantParams"); |
| if (!model || !channelQuant) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandSymmPerChannelQuantParams passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model); |
| return m->setOperandSymmPerChannelQuantParams(index, *channelQuant); |
| } |
| |
| int ANeuralNetworksModel_identifyInputsAndOutputs(ANeuralNetworksModel* model, uint32_t inputCount, |
| const uint32_t* inputs, uint32_t outputCount, |
| const uint32_t* outputs) { |
| NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_identifyInputsAndOutputs"); |
| if (!model || !inputs || !outputs) { |
| LOG(ERROR) << ("ANeuralNetworksModel_identifyInputsAndOutputs passed a nullptr"); |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model); |
| return m->identifyInputsAndOutputs(inputCount, inputs, outputCount, outputs); |
| } |
| |
| int ANeuralNetworksModel_relaxComputationFloat32toFloat16(ANeuralNetworksModel* model, bool allow) { |
| NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_relaxComputationFloat32toFloat16"); |
| if (!model) { |
| LOG(ERROR) << ("ANeuralNetworksModel_relaxComputationFloat32toFloat16 passed a nullptr"); |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model); |
| return m->relaxComputationFloat32toFloat16(allow); |
| } |
| |
| int ANeuralNetworksCompilation_create(ANeuralNetworksModel* model, |
| ANeuralNetworksCompilation** compilation) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksCompilation_create"); |
| if (!model || !compilation) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_create passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| |
| ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model); |
| CompilationBuilder* c = nullptr; |
| |
| const auto& drivers = DeviceManager::get()->getDrivers(); |
| |
| int result = m->createCompilation(&c, drivers); |
| *compilation = reinterpret_cast<ANeuralNetworksCompilation*>(c); |
| return result; |
| } |
| |
| void ANeuralNetworksCompilation_free(ANeuralNetworksCompilation* compilation) { |
| NNTRACE_RT(NNTRACE_PHASE_TERMINATION, "ANeuralNetworksCompilation_free"); |
| // No validation. Free of nullptr is valid. |
| CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(compilation); |
| delete c; |
| } |
| |
| int ANeuralNetworksCompilation_setPreference(ANeuralNetworksCompilation* compilation, |
| int32_t preference) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksCompilation_setPreference"); |
| if (!compilation) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_setPreference passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(compilation); |
| return c->setPreference(preference); |
| } |
| |
| int ANeuralNetworksCompilation_setCaching(ANeuralNetworksCompilation* compilation, |
| const char* cacheDir, const uint8_t* token) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksCompilation_setCaching"); |
| if (!compilation || !cacheDir || !token) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_setCaching passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(compilation); |
| return c->setCaching(cacheDir, token); |
| } |
| |
| int ANeuralNetworksCompilation_finish(ANeuralNetworksCompilation* compilation) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksCompilation_finish"); |
| if (!compilation) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_finish passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(compilation); |
| int result = c->finish(); |
| telemetry::onCompilationFinish(c, result); |
| |
| return result; |
| } |
| |
| int ANeuralNetworksCompilation_setPriority(ANeuralNetworksCompilation* compilation, int priority) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksCompilation_setPriority"); |
| if (!compilation) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_setPriority passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(compilation); |
| return c->setPriority(priority); |
| } |
| |
| int ANeuralNetworksCompilation_setTimeout(ANeuralNetworksCompilation* compilation, |
| uint64_t duration) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksCompilation_setTimeout"); |
| if (!compilation) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_setTimeout passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(compilation); |
| return c->setTimeoutDuration(duration); |
| } |
| |
| int ANeuralNetworksExecution_create(ANeuralNetworksCompilation* compilation, |
| ANeuralNetworksExecution** execution) { |
| NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksExecution_create"); |
| if (!compilation || !execution) { |
| LOG(ERROR) << "ANeuralNetworksExecution_create passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| |
| CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(compilation); |
| ExecutionBuilder* r = nullptr; |
| int result = c->createExecution(&r); |
| *execution = reinterpret_cast<ANeuralNetworksExecution*>(r); |
| return result; |
| } |
| |
| void ANeuralNetworksExecution_free(ANeuralNetworksExecution* execution) { |
| NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksExecution_free"); |
| // Free of nullptr is valid. |
| ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution); |
| if (r && r->inFlight()) { |
| LOG(ERROR) << "ANeuralNetworksExecution_free passed an in-flight ANeuralNetworksExecution" |
| << " and is therefore ignored"; |
| return; |
| } |
| delete r; |
| } |
| |
| int ANeuralNetworksExecution_getOutputOperandRank(ANeuralNetworksExecution* execution, |
| int32_t index, uint32_t* rank) { |
| NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksExecution_getOutputOperandRank"); |
| if (!execution || !rank) { |
| LOG(ERROR) << "ANeuralNetworksExecution_getOutputOperandRank passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution); |
| return r->getOutputOperandRank(index, rank); |
| } |
| |
| int ANeuralNetworksExecution_getOutputOperandDimensions(ANeuralNetworksExecution* execution, |
| int32_t index, uint32_t* dimensions) { |
| NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksExecution_getOutputOperandDimensions"); |
| if (!execution || !dimensions) { |
| LOG(ERROR) << "ANeuralNetworksExecution_getOutputOperandDimensions passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution); |
| return r->getOutputOperandDimensions(index, dimensions); |
| } |
| |
| int ANeuralNetworksExecution_setInput(ANeuralNetworksExecution* execution, int32_t index, |
| const ANeuralNetworksOperandType* type, const void* buffer, |
| size_t length) { |
| NNTRACE_RT(NNTRACE_PHASE_INPUTS_AND_OUTPUTS, "ANeuralNetworksExecution_setInput"); |
| if (!execution || (!buffer && length != 0)) { |
| LOG(ERROR) << "ANeuralNetworksExecution_setInput passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution); |
| return r->setInput(index, type, buffer, length); |
| } |
| |
| int ANeuralNetworksExecution_setInputFromMemory(ANeuralNetworksExecution* execution, int32_t index, |
| const ANeuralNetworksOperandType* type, |
| const ANeuralNetworksMemory* memory, size_t offset, |
| size_t length) { |
| NNTRACE_RT(NNTRACE_PHASE_INPUTS_AND_OUTPUTS, "ANeuralNetworksExecution_setInputFromMemory"); |
| if (!execution || !memory) { |
| LOG(ERROR) << "ANeuralNetworksExecution_setInputFromMemory passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| |
| const RuntimeMemory* m = reinterpret_cast<const RuntimeMemory*>(memory); |
| ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution); |
| return r->setInputFromMemory(index, type, m, offset, length); |
| } |
| |
| int ANeuralNetworksExecution_setOutput(ANeuralNetworksExecution* execution, int32_t index, |
| const ANeuralNetworksOperandType* type, void* buffer, |
| size_t length) { |
| NNTRACE_RT(NNTRACE_PHASE_INPUTS_AND_OUTPUTS, "ANeuralNetworksExecution_setOutput"); |
| if (!execution || (!buffer && length != 0)) { |
| LOG(ERROR) << "ANeuralNetworksExecution_setOutput passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution); |
| return r->setOutput(index, type, buffer, length); |
| } |
| |
| int ANeuralNetworksExecution_setOutputFromMemory(ANeuralNetworksExecution* execution, int32_t index, |
| const ANeuralNetworksOperandType* type, |
| const ANeuralNetworksMemory* memory, size_t offset, |
| size_t length) { |
| NNTRACE_RT(NNTRACE_PHASE_INPUTS_AND_OUTPUTS, "ANeuralNetworksExecution_setOutputFromMemory"); |
| if (!execution || !memory) { |
| LOG(ERROR) << "ANeuralNetworksExecution_setOutputFromMemory passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| |
| ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution); |
| const RuntimeMemory* m = reinterpret_cast<const RuntimeMemory*>(memory); |
| return r->setOutputFromMemory(index, type, m, offset, length); |
| } |
| |
| int ANeuralNetworksExecution_startCompute(ANeuralNetworksExecution* execution, |
| ANeuralNetworksEvent** event) { |
| NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksExecution_startCompute"); |
| if (!event) { |
| LOG(ERROR) << "ANeuralNetworksExecution_startCompute passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| if (!execution) { |
| LOG(ERROR) << "ANeuralNetworksExecution_startCompute passed a nullptr"; |
| *event = nullptr; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| // TODO validate the rest |
| |
| ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution); |
| |
| std::shared_ptr<ExecutionCallback> callback; |
| *event = nullptr; |
| |
| int n = r->computeAsynchronously(&callback); |
| if (n != ANEURALNETWORKS_NO_ERROR) { |
| return n; |
| } |
| auto e = std::make_unique<CallbackEvent>(std::move(callback)); |
| *event = reinterpret_cast<ANeuralNetworksEvent*>(e.release()); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ANeuralNetworksExecution_setTimeout(ANeuralNetworksExecution* execution, uint64_t duration) { |
| NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksExecution_setTimeout"); |
| if (!execution) { |
| LOG(ERROR) << "ANeuralNetworksExecution_setTimeout passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| |
| ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution); |
| return r->setTimeoutDuration(duration); |
| } |
| |
| int ANeuralNetworksEvent_wait(ANeuralNetworksEvent* event) { |
| NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksEvent_wait"); |
| if (event == nullptr) { |
| LOG(ERROR) << "ANeuralNetworksEvent_wait passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| |
| IEvent* e = reinterpret_cast<IEvent*>(event); |
| return convertErrorStatusToResultCode(e->wait()); |
| } |
| |
| void ANeuralNetworksEvent_free(ANeuralNetworksEvent* event) { |
| NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksEvent_free"); |
| // No validation. Free of nullptr is valid. |
| if (event) { |
| IEvent* e = reinterpret_cast<IEvent*>(event); |
| e->wait(); |
| delete e; |
| } |
| } |
| |
| int ANeuralNetworksExecution_setLoopTimeout(ANeuralNetworksExecution* execution, |
| uint64_t duration) { |
| NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksExecution_setLoopTimeout"); |
| if (!execution) { |
| LOG(ERROR) << "ANeuralNetworksExecution_setLoopTimeout passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| |
| ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution); |
| return r->setLoopTimeout(duration); |
| } |
| |
| uint64_t ANeuralNetworks_getDefaultLoopTimeout() { |
| return operation_while::kTimeoutNsDefault; |
| } |
| |
| uint64_t ANeuralNetworks_getMaximumLoopTimeout() { |
| return operation_while::kTimeoutNsMaximum; |
| } |
| |
| int ANeuralNetworksDevice_getExtensionSupport(const ANeuralNetworksDevice* device, |
| const char* extensionName, |
| bool* isExtensionSupported) { |
| if (device == nullptr || extensionName == nullptr || isExtensionSupported == nullptr) { |
| LOG(ERROR) << "ANeuralNetworksDevice_getExtensionSupport passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| |
| const Device* d = reinterpret_cast<const Device*>(device); |
| const auto& supportedExtensions = d->getSupportedExtensions(); |
| *isExtensionSupported = std::any_of(supportedExtensions.begin(), supportedExtensions.end(), |
| [extensionName](const auto& supportedExtension) { |
| return supportedExtension.name == extensionName; |
| }); |
| |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ANeuralNetworksModel_getExtensionOperandType(ANeuralNetworksModel* model, |
| const char* extensionName, |
| uint16_t operandCodeWithinExtension, |
| int32_t* type) { |
| NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_getExtensionOperandType"); |
| if (!model || !extensionName || !type) { |
| LOG(ERROR) << "ANeuralNetworksModel_getExtensionOperandType passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model); |
| return m->getExtensionType(extensionName, operandCodeWithinExtension, type); |
| } |
| |
| int ANeuralNetworksModel_getExtensionOperationType(ANeuralNetworksModel* model, |
| const char* extensionName, |
| uint16_t operationCodeWithinExtension, |
| ANeuralNetworksOperationType* type) { |
| NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_getExtensionOperationType"); |
| if (!model || !extensionName || !type) { |
| LOG(ERROR) << "ANeuralNetworksModel_getExtensionOperationType passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model); |
| return m->getExtensionType(extensionName, operationCodeWithinExtension, type); |
| } |
| |
| int ANeuralNetworksModel_setOperandExtensionData(ANeuralNetworksModel* model, int32_t index, |
| const void* data, size_t length) { |
| NNTRACE_RT(NNTRACE_PHASE_PREPARATION, "ANeuralNetworksModel_setOperandExtensionData"); |
| if (!model || (!data && length != 0)) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandExtensionData passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model); |
| return m->setOperandExtensionData(index, data, length); |
| } |
| |
| int ANeuralNetworksCompilation_addExtensionAttribute(ANeuralNetworksCompilation* compilation, |
| const char* extensionName, |
| uint16_t attributeCodeWithinExtension, |
| const void* data, size_t length) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "ANeuralNetworksCompilation_addExtensionAttribute"); |
| if (!compilation || !extensionName || (!data && length != 0)) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_addExtensionAttribute passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(compilation); |
| return c->addExtensionAttribute(extensionName, attributeCodeWithinExtension, data, length); |
| } |
| |
| int ANeuralNetworksExecution_addExtensionAttribute(ANeuralNetworksExecution* execution, |
| const char* extensionName, |
| uint16_t attributeCodeWithinExtension, |
| const void* data, size_t length) { |
| NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksExecution_addExtensionAttribute"); |
| if (!execution || !extensionName || (!data && length != 0)) { |
| LOG(ERROR) << "ANeuralNetworksExecution_addExtensionAttribute passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution); |
| return r->addExtensionAttribute(extensionName, attributeCodeWithinExtension, data, length); |
| } |
| |
| int ANeuralNetworksEvent_createFromSyncFenceFd(int syncFenceFd, ANeuralNetworksEvent** event) { |
| if (event == nullptr) { |
| LOG(ERROR) << "ANeuralNetworksEvent_createFromSyncFenceFd passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| if (syncFenceFd <= 0) { |
| LOG(ERROR) << "ANeuralNetworksEvent_createFromSyncFenceFd passed an invalid fd: " |
| << syncFenceFd; |
| *event = nullptr; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| std::unique_ptr<SyncFenceEvent> e = |
| std::make_unique<SyncFenceEvent>(syncFenceFd, nullptr, nullptr); |
| *event = reinterpret_cast<ANeuralNetworksEvent*>(e.release()); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ANeuralNetworksEvent_getSyncFenceFd(const ANeuralNetworksEvent* event, int* syncFenceFd) { |
| if (syncFenceFd == nullptr) { |
| LOG(ERROR) << "ANeuralNetworksEvent_getSyncFenceFd passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| *syncFenceFd = -1; |
| if (event == nullptr) { |
| LOG(ERROR) << "ANeuralNetworksEvent_getSyncFenceFd passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| const IEvent* e = reinterpret_cast<const IEvent*>(event); |
| // The client owns the dupped fd, and is responsible for closing it. |
| *syncFenceFd = e->getSyncFenceFd(/*shouldDup*/ true); |
| if (*syncFenceFd <= 0) { |
| LOG(ERROR) << "ANeuralNetworksEvent_getSyncFenceFd unable to get valid sync_fence fd"; |
| *syncFenceFd = -1; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ANeuralNetworksExecution_startComputeWithDependencies( |
| ANeuralNetworksExecution* execution, const ANeuralNetworksEvent* const* dependencies, |
| uint32_t numOfDependencies, uint64_t duration, ANeuralNetworksEvent** event) { |
| NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksExecution_startComputeWithDependencies"); |
| if (!event) { |
| LOG(ERROR) << "ANeuralNetworksExecution_startComputeWithDependencies passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| if ((!dependencies && numOfDependencies != 0) || !execution) { |
| LOG(ERROR) << "ANeuralNetworksExecution_startComputeWithDependencies passed a nullptr"; |
| *event = nullptr; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution); |
| |
| std::vector<int> waitForList; |
| for (uint32_t i = 0; i < numOfDependencies; i++) { |
| if (!dependencies[i]) { |
| LOG(ERROR) << "ANeuralNetworksExecution_startComputeWithDependencies passed a nullptr"; |
| *event = nullptr; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| const IEvent* e = reinterpret_cast<const IEvent*>(dependencies[i]); |
| int syncFenceFd = e->getSyncFenceFd(/*should_dup*/ false); |
| if (syncFenceFd < 0) { |
| e->wait(); |
| } else { |
| waitForList.push_back(syncFenceFd); |
| } |
| } |
| |
| if (r->getCompilation()->hasDynamicTemporaries()) { |
| // The current implementation of fenced execution does not support |
| // dynamic temporaries. Fall back to non fenced execution. |
| LOG(INFO) << "ANeuralNetworksExecution_startComputeWithDependencies falling back" |
| << " to ANeuralNetworksExecution_startCompute" |
| << " because of boundary operands of unknown size"; |
| for (int syncFenceFd : waitForList) { |
| if (syncFenceFd > 0) { |
| auto w = syncWait(syncFenceFd, -1); |
| if (w != FenceState::SIGNALED) { |
| VLOG(EXECUTION) << "syncWait failed, fd: " << syncFenceFd; |
| *event = nullptr; |
| return ANEURALNETWORKS_OP_FAILED; |
| } |
| } |
| } |
| return ANeuralNetworksExecution_startCompute(execution, event); |
| } |
| |
| int syncFenceToSignal = -1; |
| int n = r->computeFenced(waitForList, duration, &syncFenceToSignal); |
| std::unique_ptr<SyncFenceEvent> e = std::make_unique<SyncFenceEvent>( |
| syncFenceToSignal, r->getExecuteFencedInfoCallback(), |
| // TODO(miaowang): support dynamic output shape only with memory domain. |
| // For now just return empty output shapes. |
| [r](ErrorStatus status) { |
| return r->finishComputation(status, {}, ExecutionMode::ASYNC_WITH_DEPS); |
| }); |
| close(syncFenceToSignal); |
| if (n != ANEURALNETWORKS_NO_ERROR) { |
| *event = nullptr; |
| } else { |
| *event = reinterpret_cast<ANeuralNetworksEvent*>(e.release()); |
| } |
| return n; |
| } |
| |
| #ifdef NN_DEBUGGABLE |
| static int64_t sRuntimeFeatureLevel = 0; |
| void forTest_setRuntimeFeatureLevel(int64_t level) { |
| sRuntimeFeatureLevel = level; |
| } |
| #endif |
| |
| int64_t ANeuralNetworks_getRuntimeFeatureLevel() { |
| #ifdef NN_DEBUGGABLE |
| if (sRuntimeFeatureLevel) { |
| return sRuntimeFeatureLevel; |
| } |
| #endif |
| return DeviceManager::get()->getRuntimeFeatureLevel(); |
| } |
| |
| int ANeuralNetworksExecution_enableInputAndOutputPadding(ANeuralNetworksExecution* execution, |
| bool enable) { |
| NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksExecution_enableInputAndOutputPadding"); |
| if (!execution) { |
| LOG(ERROR) << "ANeuralNetworksExecution_enableInputAndOutputPadding passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution); |
| return r->enableInputAndOutputPadding(enable); |
| } |
| |
| int ANeuralNetworksCompilation_getPreferredMemoryAlignmentForInput( |
| const ANeuralNetworksCompilation* compilation, uint32_t index, uint32_t* alignment) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, |
| "ANeuralNetworksCompilation_getPreferredMemoryAlignmentForInput"); |
| if (!compilation || !alignment) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_getPreferredMemoryAlignmentForInput passed a " |
| "nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| const CompilationBuilder* c = reinterpret_cast<const CompilationBuilder*>(compilation); |
| return c->getPreferredMemoryAlignmentForInput(index, alignment); |
| } |
| |
| int ANeuralNetworksCompilation_getPreferredMemoryPaddingForInput( |
| const ANeuralNetworksCompilation* compilation, uint32_t index, uint32_t* padding) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, |
| "ANeuralNetworksCompilation_getPreferredMemoryPaddingForInput"); |
| if (!compilation || !padding) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_getPreferredMemoryPaddingForInput passed a " |
| "nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| const CompilationBuilder* c = reinterpret_cast<const CompilationBuilder*>(compilation); |
| return c->getPreferredMemoryPaddingForInput(index, padding); |
| } |
| |
| int ANeuralNetworksCompilation_getPreferredMemoryAlignmentForOutput( |
| const ANeuralNetworksCompilation* compilation, uint32_t index, uint32_t* alignment) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, |
| "ANeuralNetworksCompilation_getPreferredMemoryAlignmentForOutput"); |
| if (!compilation || !alignment) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_getPreferredMemoryAlignmentForOutput passed a " |
| "nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| const CompilationBuilder* c = reinterpret_cast<const CompilationBuilder*>(compilation); |
| return c->getPreferredMemoryAlignmentForOutput(index, alignment); |
| } |
| |
| int ANeuralNetworksCompilation_getPreferredMemoryPaddingForOutput( |
| const ANeuralNetworksCompilation* compilation, uint32_t index, uint32_t* padding) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, |
| "ANeuralNetworksCompilation_getPreferredMemoryPaddingForOutput"); |
| if (!compilation || !padding) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_getPreferredMemoryPaddingForOutput passed a " |
| "nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| const CompilationBuilder* c = reinterpret_cast<const CompilationBuilder*>(compilation); |
| return c->getPreferredMemoryPaddingForOutput(index, padding); |
| } |
| |
| int ANeuralNetworksExecution_setReusable(ANeuralNetworksExecution* execution, bool reusable) { |
| NNTRACE_RT(NNTRACE_PHASE_EXECUTION, "ANeuralNetworksExecution_setReusable"); |
| if (!execution) { |
| LOG(ERROR) << "ANeuralNetworksExecution_setReusable passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution); |
| return r->setReusable(reusable); |
| } |
| |
| #ifdef NN_COMPATIBILITY_LIBRARY_BUILD |
| |
| int SL_ANeuralNetworksCompilation_setCachingFromFds(ANeuralNetworksCompilation* compilation, |
| const int* modelCacheFds, |
| const uint32_t numModelCacheFiles, |
| const int* dataCacheFds, |
| const uint32_t numDataCacheFiles, |
| const uint8_t* token) { |
| NNTRACE_RT(NNTRACE_PHASE_COMPILATION, "SL_ANeuralNetworksCompilation_setCachingFromFds"); |
| if (!compilation || (numModelCacheFiles != 0 && !modelCacheFds) || |
| (numDataCacheFiles != 0 && !dataCacheFds) || !token) { |
| LOG(ERROR) << "SL_ANeuralNetworksCompilation_setCachingFromFds passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(compilation); |
| return c->setCachingFromFds(modelCacheFds, numModelCacheFiles, dataCacheFds, numDataCacheFiles, |
| token); |
| } |
| |
| int SL_ANeuralNetworksDevice_getNumberOfCacheFilesNeeded(const ANeuralNetworksDevice* device, |
| uint32_t* numModelCacheFiles, |
| uint32_t* numDataCacheFiles) { |
| if (numModelCacheFiles) *numModelCacheFiles = 0; |
| if (numDataCacheFiles) *numDataCacheFiles = 0; |
| |
| if (device == nullptr || numModelCacheFiles == nullptr || numDataCacheFiles == nullptr) { |
| LOG(ERROR) << "SL_ANeuralNetworksDevice_getNumberOfCacheFilesNeeded passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| |
| const Device* d = reinterpret_cast<const Device*>(device); |
| std::tie(*numModelCacheFiles, *numDataCacheFiles) = d->getNumberOfCacheFilesNeeded(); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int SL_ANeuralNetworksDevice_getPerformanceInfo( |
| const ANeuralNetworksDevice* device, int32_t performanceInfoKind, |
| SL_ANeuralNetworksPerformanceInfo* performanceInfo) { |
| if (performanceInfo) *performanceInfo = {.execTime = 0.0f, .powerUsage = 0.0f}; |
| |
| if (device == nullptr || performanceInfo == nullptr) { |
| LOG(ERROR) << "SL_ANeuralNetworksDevice_getPerformanceInfo passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| |
| constexpr auto conv = [](const Capabilities::PerformanceInfo& info) { |
| return SL_ANeuralNetworksPerformanceInfo{.execTime = info.execTime, |
| .powerUsage = info.powerUsage}; |
| }; |
| |
| const Device* d = reinterpret_cast<const Device*>(device); |
| const Capabilities& capabilities = d->getCapabilities(); |
| |
| switch (performanceInfoKind) { |
| case SL_ANEURALNETWORKS_CAPABILITIES_PERFORMANCE_RELAXED_SCALAR: |
| *performanceInfo = conv(capabilities.relaxedFloat32toFloat16PerformanceScalar); |
| return ANEURALNETWORKS_NO_ERROR; |
| case SL_ANEURALNETWORKS_CAPABILITIES_PERFORMANCE_RELAXED_TENSOR: |
| *performanceInfo = conv(capabilities.relaxedFloat32toFloat16PerformanceTensor); |
| return ANEURALNETWORKS_NO_ERROR; |
| case SL_ANEURALNETWORKS_CAPABILITIES_PERFORMANCE_IF: |
| *performanceInfo = conv(capabilities.ifPerformance); |
| return ANEURALNETWORKS_NO_ERROR; |
| case SL_ANEURALNETWORKS_CAPABILITIES_PERFORMANCE_WHILE: |
| *performanceInfo = conv(capabilities.whilePerformance); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| LOG(ERROR) << "SL_ANeuralNetworksDevice_getPerformanceInfo passed unknown performanceInfoKind " |
| << performanceInfoKind; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| int SL_ANeuralNetworksDevice_forEachOperandPerformanceInfo( |
| const ANeuralNetworksDevice* device, void* context, |
| void (*callback)(SL_ANeuralNetworksOperandPerformanceInfo, void*)) { |
| if (device == nullptr || context == nullptr || callback == nullptr) { |
| LOG(ERROR) << "SL_ANeuralNetworksDevice_forEachOperandPerformanceInfo passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| |
| constexpr auto conv = [](const Capabilities::OperandPerformance& operandPerformance) { |
| return SL_ANeuralNetworksOperandPerformanceInfo{ |
| .operandType = static_cast<int32_t>(operandPerformance.type), |
| .performanceInfo = {.execTime = operandPerformance.info.execTime, |
| .powerUsage = operandPerformance.info.powerUsage}, |
| }; |
| }; |
| |
| const Device* d = reinterpret_cast<const Device*>(device); |
| const Capabilities& capabilities = d->getCapabilities(); |
| |
| for (const auto& operandPerformance : capabilities.operandPerformance.asVector()) { |
| const SL_ANeuralNetworksOperandPerformanceInfo opPerf = conv(operandPerformance); |
| callback(opPerf, context); |
| } |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int SL_ANeuralNetworksDevice_getVendorExtensionCount(const ANeuralNetworksDevice* device, |
| uint32_t* vendorExtensionCount) { |
| if (vendorExtensionCount) *vendorExtensionCount = 0; |
| |
| if (device == nullptr || vendorExtensionCount == nullptr) { |
| LOG(ERROR) << "SL_ANeuralNetworksDevice_getVendorExtensionCount passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| |
| const Device* d = reinterpret_cast<const Device*>(device); |
| *vendorExtensionCount = d->getSupportedExtensions().size(); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int SL_ANeuralNetworksDevice_getVendorExtensionName(const ANeuralNetworksDevice* device, |
| uint32_t vendorExtensionIndex, |
| const char** extensionName) { |
| if (extensionName) *extensionName = nullptr; |
| |
| if (device == nullptr || extensionName == nullptr) { |
| LOG(ERROR) << "SL_ANeuralNetworksDevice_getVendorExtensionName passed a nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| |
| const Device* d = reinterpret_cast<const Device*>(device); |
| const auto& extensions = d->getSupportedExtensions(); |
| |
| if (vendorExtensionIndex >= extensions.size()) { |
| LOG(ERROR) |
| << "SL_ANeuralNetworksDevice_getVendorExtensionName passed a vendorExtensionIndex " |
| "that is out of range"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| const auto& extension = extensions[vendorExtensionIndex]; |
| |
| *extensionName = extension.name.c_str(); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int SL_ANeuralNetworksDevice_forEachVendorExtensionOperandTypeInformation( |
| const ANeuralNetworksDevice* device, uint32_t vendorExtensionIndex, void* context, |
| void (*callback)(SL_ANeuralNetworksExtensionOperandTypeInformation, void*)) { |
| if (device == nullptr || context == nullptr || callback == nullptr) { |
| LOG(ERROR) |
| << "SL_ANeuralNetworksDevice_forEachVendorExtensionOperandTypeInformation passed a " |
| "nullptr"; |
| return ANEURALNETWORKS_UNEXPECTED_NULL; |
| } |
| |
| const Device* d = reinterpret_cast<const Device*>(device); |
| const auto& extensions = d->getSupportedExtensions(); |
| |
| if (vendorExtensionIndex >= extensions.size()) { |
| LOG(ERROR) |
| << "SL_ANeuralNetworksDevice_forEachVendorExtensionOperandTypeInformation passed a " |
| "vendorExtensionIndex that is out of range"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| const auto& operandTypes = extensions[vendorExtensionIndex].operandTypes; |
| |
| constexpr auto conv = [](const Extension::OperandTypeInformation& operandTypeInfo) { |
| return SL_ANeuralNetworksExtensionOperandTypeInformation{ |
| .byteSize = operandTypeInfo.byteSize, |
| .type = operandTypeInfo.type, |
| .isTensor = operandTypeInfo.isTensor, |
| }; |
| }; |
| |
| for (const auto& operandTypeInfo : operandTypes) { |
| const SL_ANeuralNetworksExtensionOperandTypeInformation opTypeInfo = conv(operandTypeInfo); |
| callback(opTypeInfo, context); |
| } |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| #define NNCL_FUNC(symbol) .symbol = symbol |
| |
| NnApiSLDriverImplFL8 slDriverImpl{ |
| .base{ |
| .base{.implFeatureLevel = ANEURALNETWORKS_FEATURE_LEVEL_8}, |
| NNCL_FUNC(ANeuralNetworksBurst_create), |
| NNCL_FUNC(ANeuralNetworksBurst_free), |
| NNCL_FUNC(ANeuralNetworksCompilation_createForDevices), |
| NNCL_FUNC(ANeuralNetworksCompilation_finish), |
| NNCL_FUNC(ANeuralNetworksCompilation_free), |
| NNCL_FUNC(ANeuralNetworksCompilation_getPreferredMemoryAlignmentForInput), |
| NNCL_FUNC(ANeuralNetworksCompilation_getPreferredMemoryAlignmentForOutput), |
| NNCL_FUNC(ANeuralNetworksCompilation_getPreferredMemoryPaddingForInput), |
| NNCL_FUNC(ANeuralNetworksCompilation_getPreferredMemoryPaddingForOutput), |
| NNCL_FUNC(ANeuralNetworksCompilation_setCaching), |
| NNCL_FUNC(ANeuralNetworksCompilation_setPreference), |
| NNCL_FUNC(ANeuralNetworksCompilation_setPriority), |
| NNCL_FUNC(ANeuralNetworksCompilation_setTimeout), |
| NNCL_FUNC(ANeuralNetworksDevice_getExtensionSupport), |
| NNCL_FUNC(ANeuralNetworksDevice_getFeatureLevel), |
| NNCL_FUNC(ANeuralNetworksDevice_getName), |
| NNCL_FUNC(ANeuralNetworksDevice_getType), |
| NNCL_FUNC(ANeuralNetworksDevice_getVersion), |
| NNCL_FUNC(ANeuralNetworksDevice_wait), |
| NNCL_FUNC(ANeuralNetworksEvent_createFromSyncFenceFd), |
| NNCL_FUNC(ANeuralNetworksEvent_free), |
| NNCL_FUNC(ANeuralNetworksEvent_getSyncFenceFd), |
| NNCL_FUNC(ANeuralNetworksEvent_wait), |
| NNCL_FUNC(ANeuralNetworksExecution_burstCompute), |
| NNCL_FUNC(ANeuralNetworksExecution_compute), |
| NNCL_FUNC(ANeuralNetworksExecution_create), |
| NNCL_FUNC(ANeuralNetworksExecution_enableInputAndOutputPadding), |
| NNCL_FUNC(ANeuralNetworksExecution_free), |
| NNCL_FUNC(ANeuralNetworksExecution_getDuration), |
| NNCL_FUNC(ANeuralNetworksExecution_getOutputOperandDimensions), |
| NNCL_FUNC(ANeuralNetworksExecution_getOutputOperandRank), |
| NNCL_FUNC(ANeuralNetworksExecution_setInput), |
| NNCL_FUNC(ANeuralNetworksExecution_setInputFromMemory), |
| NNCL_FUNC(ANeuralNetworksExecution_setLoopTimeout), |
| NNCL_FUNC(ANeuralNetworksExecution_setMeasureTiming), |
| NNCL_FUNC(ANeuralNetworksExecution_setOutput), |
| NNCL_FUNC(ANeuralNetworksExecution_setOutputFromMemory), |
| NNCL_FUNC(ANeuralNetworksExecution_setReusable), |
| NNCL_FUNC(ANeuralNetworksExecution_setTimeout), |
| NNCL_FUNC(ANeuralNetworksExecution_startComputeWithDependencies), |
| NNCL_FUNC(ANeuralNetworksMemoryDesc_addInputRole), |
| NNCL_FUNC(ANeuralNetworksMemoryDesc_addOutputRole), |
| NNCL_FUNC(ANeuralNetworksMemoryDesc_create), |
| NNCL_FUNC(ANeuralNetworksMemoryDesc_finish), |
| NNCL_FUNC(ANeuralNetworksMemoryDesc_free), |
| NNCL_FUNC(ANeuralNetworksMemoryDesc_setDimensions), |
| NNCL_FUNC(ANeuralNetworksMemory_copy), |
| NNCL_FUNC(ANeuralNetworksMemory_createFromAHardwareBuffer), |
| NNCL_FUNC(ANeuralNetworksMemory_createFromDesc), |
| NNCL_FUNC(ANeuralNetworksMemory_createFromFd), |
| NNCL_FUNC(ANeuralNetworksMemory_free), |
| NNCL_FUNC(ANeuralNetworksModel_addOperand), |
| NNCL_FUNC(ANeuralNetworksModel_addOperation), |
| NNCL_FUNC(ANeuralNetworksModel_create), |
| NNCL_FUNC(ANeuralNetworksModel_finish), |
| NNCL_FUNC(ANeuralNetworksModel_free), |
| NNCL_FUNC(ANeuralNetworksModel_getExtensionOperandType), |
| NNCL_FUNC(ANeuralNetworksModel_getExtensionOperationType), |
| NNCL_FUNC(ANeuralNetworksModel_getSupportedOperationsForDevices), |
| NNCL_FUNC(ANeuralNetworksModel_identifyInputsAndOutputs), |
| NNCL_FUNC(ANeuralNetworksModel_relaxComputationFloat32toFloat16), |
| NNCL_FUNC(ANeuralNetworksModel_setOperandExtensionData), |
| NNCL_FUNC(ANeuralNetworksModel_setOperandSymmPerChannelQuantParams), |
| NNCL_FUNC(ANeuralNetworksModel_setOperandValue), |
| NNCL_FUNC(ANeuralNetworksModel_setOperandValueFromMemory), |
| NNCL_FUNC(ANeuralNetworksModel_setOperandValueFromModel), |
| NNCL_FUNC(ANeuralNetworks_getDefaultLoopTimeout), |
| NNCL_FUNC(ANeuralNetworks_getDevice), |
| NNCL_FUNC(ANeuralNetworks_getDeviceCount), |
| NNCL_FUNC(ANeuralNetworks_getMaximumLoopTimeout), |
| NNCL_FUNC(ANeuralNetworks_getRuntimeFeatureLevel), |
| NNCL_FUNC(SL_ANeuralNetworksCompilation_setCachingFromFds), |
| NNCL_FUNC(SL_ANeuralNetworksDevice_getNumberOfCacheFilesNeeded), |
| NNCL_FUNC(SL_ANeuralNetworksDevice_getPerformanceInfo), |
| NNCL_FUNC(SL_ANeuralNetworksDevice_forEachOperandPerformanceInfo), |
| NNCL_FUNC(SL_ANeuralNetworksDevice_getVendorExtensionCount), |
| NNCL_FUNC(SL_ANeuralNetworksDevice_getVendorExtensionName), |
| NNCL_FUNC(SL_ANeuralNetworksDevice_forEachVendorExtensionOperandTypeInformation), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticCompilationInfo_getSessionId), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticCompilationInfo_getNnApiVersion), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticCompilationInfo_getModelArchHash), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticCompilationInfo_getDeviceIds), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticCompilationInfo_getErrorCode), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticCompilationInfo_getInputDataClass), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticCompilationInfo_getOutputDataClass), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticCompilationInfo_getCompilationTimeNanos), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticCompilationInfo_isCachingEnabled), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticCompilationInfo_isControlFlowUsed), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticCompilationInfo_areDynamicTensorsUsed), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticExecutionInfo_getSessionId), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticExecutionInfo_getNnApiVersion), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticExecutionInfo_getModelArchHash), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticExecutionInfo_getDeviceIds), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticExecutionInfo_getExecutionMode), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticExecutionInfo_getInputDataClass), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticExecutionInfo_getOutputDataClass), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticExecutionInfo_getErrorCode), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticExecutionInfo_getRuntimeExecutionTimeNanos), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticExecutionInfo_getDriverExecutionTimeNanos), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticExecutionInfo_getHardwareExecutionTimeNanos), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticExecutionInfo_isCachingEnabled), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticExecutionInfo_isControlFlowUsed), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnosticExecutionInfo_areDynamicTensorsUsed), |
| NNCL_FUNC(SL_ANeuralNetworksDiagnostic_registerCallbacks), |
| }, |
| NNCL_FUNC(ANeuralNetworksCompilation_addExtensionAttribute), |
| NNCL_FUNC(ANeuralNetworksExecution_addExtensionAttribute), |
| }; |
| |
| #undef NNCL_FUNC |
| |
| __BEGIN_DECLS |
| NnApiSLDriverImpl* ANeuralNetworks_getSLDriverImpl() { |
| return reinterpret_cast<NnApiSLDriverImpl*>(&slDriverImpl); |
| } |
| __END_DECLS |
| |
| #endif // NN_COMPATIBILITY_LIBRARY_BUILD |