| /* |
| * Copyright (C) 2018 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "Operations" |
| |
| #include "HalInterfaces.h" |
| #include "OperationResolver.h" |
| #include "OperationsUtils.h" |
| #include "Tracing.h" |
| |
| #include <cmath> |
| |
| namespace android { |
| namespace nn { |
| namespace elementwise { |
| |
| constexpr uint32_t kNumInputs = 1; |
| constexpr uint32_t kInputTensor = 0; |
| |
| constexpr uint32_t kNumOutputs = 1; |
| constexpr uint32_t kOutputTensor = 0; |
| |
| namespace { |
| |
| using namespace hal; |
| |
| template <typename T> |
| inline bool compute(float func(float), const T* input, const Shape& shape, T* output) { |
| const auto size = getNumberOfElements(shape); |
| for (uint32_t i = 0; i < size; ++i) { |
| output[i] = static_cast<T>(func(static_cast<float>(input[i]))); |
| } |
| return true; |
| } |
| |
| bool execute(IOperationExecutionContext* context, float func(float)) { |
| switch (context->getInputType(kInputTensor)) { |
| case OperandType::TENSOR_FLOAT16: |
| return compute(func, context->getInputBuffer<_Float16>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getOutputBuffer<_Float16>(kOutputTensor)); |
| case OperandType::TENSOR_FLOAT32: |
| return compute(func, context->getInputBuffer<float>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getOutputBuffer<float>(kOutputTensor)); |
| default: |
| NN_RET_CHECK_FAIL() << "Unsupported tensor type for elementwise operation"; |
| } |
| } |
| |
| } // namespace |
| |
| bool validate(const IOperationValidationContext* context) { |
| NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs); |
| NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs); |
| OperandType inputType = context->getInputType(kInputTensor); |
| NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 || |
| inputType == OperandType::TENSOR_FLOAT32) |
| << "Unsupported tensor type for elementwise operation"; |
| NN_RET_CHECK(validateInputTypes(context, {inputType})); |
| NN_RET_CHECK(validateOutputTypes(context, {inputType})); |
| return validateHalVersion(context, HalVersion::V1_2); |
| } |
| |
| bool prepare(IOperationExecutionContext* context) { |
| Shape input = context->getInputShape(kInputTensor); |
| Shape output = context->getOutputShape(kOutputTensor); |
| NN_RET_CHECK(SetShape(input, &output)); |
| return context->setOutputShape(kOutputTensor, output); |
| } |
| |
| bool executeAbs(IOperationExecutionContext* context) { |
| return execute(context, std::abs); |
| } |
| |
| bool executeExp(IOperationExecutionContext* context) { |
| return execute(context, std::exp); |
| } |
| |
| bool executeLog(IOperationExecutionContext* context) { |
| return execute(context, std::log); |
| } |
| |
| bool executeRsqrt(IOperationExecutionContext* context) { |
| return execute(context, [](float x) { return 1.f / std::sqrt(x); }); |
| } |
| |
| bool executeSin(IOperationExecutionContext* context) { |
| return execute(context, std::sin); |
| } |
| |
| bool executeSqrt(IOperationExecutionContext* context) { |
| return execute(context, std::sqrt); |
| } |
| |
| } // namespace elementwise |
| |
| NN_REGISTER_OPERATION(ABS, "ABS", elementwise::validate, elementwise::prepare, |
| elementwise::executeAbs); |
| NN_REGISTER_OPERATION(EXP, "EXP", elementwise::validate, elementwise::prepare, |
| elementwise::executeExp); |
| NN_REGISTER_OPERATION(LOG, "LOG", elementwise::validate, elementwise::prepare, |
| elementwise::executeLog); |
| NN_REGISTER_OPERATION(RSQRT, "RSQRT", elementwise::validate, elementwise::prepare, |
| elementwise::executeRsqrt); |
| NN_REGISTER_OPERATION(SIN, "SIN", elementwise::validate, elementwise::prepare, |
| elementwise::executeSin); |
| NN_REGISTER_OPERATION(SQRT, "SQRT", elementwise::validate, elementwise::prepare, |
| elementwise::executeSqrt); |
| |
| } // namespace nn |
| } // namespace android |