| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "OperationsUtils.h" |
| #define LOG_TAG "Operations" |
| |
| #include "HalInterfaces.h" |
| #include "IndexedShapeWrapper.h" |
| #include "OperationResolver.h" |
| #include "Tracing.h" |
| |
| #include <cmath> |
| |
| namespace android { |
| namespace nn { |
| namespace quantize { |
| |
| constexpr uint32_t kNumInputs = 1; |
| constexpr uint32_t kInputTensor = 0; |
| |
| constexpr uint32_t kNumOutputs = 1; |
| constexpr uint32_t kOutputTensor = 0; |
| |
| namespace { |
| |
| using namespace hal; |
| |
| bool quantizeFloat32ToQuant8(const float* inputData, uint8_t* outputData, |
| const Shape& outputShape) { |
| NNTRACE_COMP("quantizeFloat32ToQuant8"); |
| uint32_t size = getNumberOfElements(outputShape); |
| for (uint32_t i = 0; i < size; ++i) { |
| outputData[i] = static_cast<uint8_t>(std::max<float>( |
| 0, std::min<float>(255, outputShape.offset + |
| std::round(inputData[i] / outputShape.scale)))); |
| } |
| return true; |
| } |
| |
| bool quantizeFloat16ToQuant8(const _Float16* inputData, uint8_t* outputData, |
| const Shape& outputShape) { |
| NNTRACE_COMP("quantizeFloat16ToQuant8"); |
| uint32_t size = getNumberOfElements(outputShape); |
| for (uint32_t i = 0; i < size; ++i) { |
| outputData[i] = static_cast<uint8_t>(std::max<float>( |
| 0, std::min<float>(255, outputShape.offset + |
| std::round(inputData[i] / outputShape.scale)))); |
| } |
| return true; |
| } |
| |
| } // namespace |
| |
| bool validate(const IOperationValidationContext* context) { |
| NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs); |
| NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs); |
| |
| const OperandType inputType = context->getInputType(kInputTensor); |
| const OperandType outputType = context->getOutputType(kOutputTensor); |
| |
| NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 || |
| inputType == OperandType::TENSOR_FLOAT32) |
| << "Unsupported input operand type for QUANTIZE op: " << toString(inputType); |
| NN_RET_CHECK(outputType == OperandType::TENSOR_QUANT8_ASYMM) |
| << "Unsupported output operand type for QUANTIZE op: " << toString(outputType); |
| return validateHalVersion(context, HalVersion::V1_2); |
| } |
| |
| bool prepare(IOperationExecutionContext* context) { |
| const Shape& input = context->getInputShape(kInputTensor); |
| Shape output = context->getOutputShape(kOutputTensor); |
| output.dimensions = input.dimensions; |
| return context->setOutputShape(kOutputTensor, output); |
| } |
| |
| bool execute(IOperationExecutionContext* context) { |
| // Bypass execution in the case of zero-sized input. |
| if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; |
| |
| const OperandType inputType = context->getInputType(kInputTensor); |
| if (inputType == OperandType::TENSOR_FLOAT32) { |
| return quantizeFloat32ToQuant8(context->getInputBuffer<float>(kInputTensor), |
| context->getOutputBuffer<uint8_t>(kOutputTensor), |
| context->getOutputShape(kOutputTensor)); |
| } else if (inputType == OperandType::TENSOR_FLOAT16) { |
| return quantizeFloat16ToQuant8(context->getInputBuffer<_Float16>(kInputTensor), |
| context->getOutputBuffer<uint8_t>(kOutputTensor), |
| context->getOutputShape(kOutputTensor)); |
| } |
| NN_RET_CHECK_FAIL() << "Unsupported tensor types combination for QUANTIZE op. (input type: " |
| << toString(inputType) |
| << " output type: " << toString(context->getOutputType(kOutputTensor)) |
| << ")"; |
| } |
| |
| } // namespace quantize |
| |
| NN_REGISTER_OPERATION(QUANTIZE, "QUANTIZE", quantize::validate, quantize::prepare, |
| quantize::execute, .allowZeroSizedInput = true); |
| |
| } // namespace nn |
| } // namespace android |