| /* |
| ** Copyright 2011, The Android Open Source Project |
| ** |
| ** Licensed under the Apache License, Version 2.0 (the "License"); |
| ** you may not use this file except in compliance with the License. |
| ** You may obtain a copy of the License at |
| ** |
| ** http://www.apache.org/licenses/LICENSE-2.0 |
| ** |
| ** Unless required by applicable law or agreed to in writing, software |
| ** distributed under the License is distributed on an "AS IS" BASIS, |
| ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| ** See the License for the specific language governing permissions and |
| ** limitations under the License. |
| */ |
| |
| #include <fcntl.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #include <algorithm> |
| #include <memory> |
| #include <numeric> |
| #include <random> |
| |
| #include <gtest/gtest.h> |
| |
| #include "BlobCache.h" |
| |
| namespace android { |
| |
| template<typename T> using sp = std::shared_ptr<T>; |
| |
| class BlobCacheTest : public ::testing::TestWithParam<BlobCache::Policy> { |
| protected: |
| |
| enum { |
| OK = 0, |
| BAD_VALUE = -EINVAL |
| }; |
| |
| enum { |
| MAX_KEY_SIZE = 6, |
| MAX_VALUE_SIZE = 8, |
| MAX_TOTAL_SIZE = 13, |
| }; |
| |
| virtual void SetUp() { |
| mBC.reset(new BlobCache(MAX_KEY_SIZE, MAX_VALUE_SIZE, MAX_TOTAL_SIZE, GetParam())); |
| } |
| |
| virtual void TearDown() { |
| mBC.reset(); |
| } |
| |
| std::unique_ptr<BlobCache> mBC; |
| }; |
| |
| INSTANTIATE_TEST_CASE_P(Policy, BlobCacheTest, |
| ::testing::Values(BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::HALVE), |
| BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::HALVE), |
| |
| BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::FIT), |
| BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::FIT), |
| |
| BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::FIT_HALVE), |
| BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::FIT_HALVE))); |
| |
| TEST_P(BlobCacheTest, CacheSingleValueSucceeds) { |
| unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; |
| mBC->set("abcd", 4, "efgh", 4); |
| ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4)); |
| ASSERT_EQ('e', buf[0]); |
| ASSERT_EQ('f', buf[1]); |
| ASSERT_EQ('g', buf[2]); |
| ASSERT_EQ('h', buf[3]); |
| } |
| |
| TEST_P(BlobCacheTest, CacheTwoValuesSucceeds) { |
| unsigned char buf[2] = { 0xee, 0xee }; |
| mBC->set("ab", 2, "cd", 2); |
| mBC->set("ef", 2, "gh", 2); |
| ASSERT_EQ(size_t(2), mBC->get("ab", 2, buf, 2)); |
| ASSERT_EQ('c', buf[0]); |
| ASSERT_EQ('d', buf[1]); |
| ASSERT_EQ(size_t(2), mBC->get("ef", 2, buf, 2)); |
| ASSERT_EQ('g', buf[0]); |
| ASSERT_EQ('h', buf[1]); |
| } |
| |
| TEST_P(BlobCacheTest, CacheTwoValuesMallocSucceeds) { |
| unsigned char *bufPtr; |
| mBC->set("ab", 2, "cd", 2); |
| mBC->set("ef", 2, "gh", 2); |
| |
| bufPtr = nullptr; |
| ASSERT_EQ(size_t(2), mBC->get("ab", 2, &bufPtr, malloc)); |
| ASSERT_NE(nullptr, bufPtr); |
| ASSERT_EQ('c', bufPtr[0]); |
| ASSERT_EQ('d', bufPtr[1]); |
| free(bufPtr); |
| |
| bufPtr = nullptr; |
| ASSERT_EQ(size_t(2), mBC->get("ef", 2, &bufPtr, malloc)); |
| ASSERT_NE(nullptr, bufPtr); |
| ASSERT_EQ('g', bufPtr[0]); |
| ASSERT_EQ('h', bufPtr[1]); |
| free(bufPtr); |
| } |
| |
| TEST_P(BlobCacheTest, GetOnlyWritesInsideBounds) { |
| unsigned char buf[6] = { 0xee, 0xee, 0xee, 0xee, 0xee, 0xee }; |
| mBC->set("abcd", 4, "efgh", 4); |
| ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf+1, 4)); |
| ASSERT_EQ(0xee, buf[0]); |
| ASSERT_EQ('e', buf[1]); |
| ASSERT_EQ('f', buf[2]); |
| ASSERT_EQ('g', buf[3]); |
| ASSERT_EQ('h', buf[4]); |
| ASSERT_EQ(0xee, buf[5]); |
| } |
| |
| TEST_P(BlobCacheTest, GetOnlyWritesIfBufferIsLargeEnough) { |
| unsigned char buf[3] = { 0xee, 0xee, 0xee }; |
| mBC->set("abcd", 4, "efgh", 4); |
| ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 3)); |
| ASSERT_EQ(0xee, buf[0]); |
| ASSERT_EQ(0xee, buf[1]); |
| ASSERT_EQ(0xee, buf[2]); |
| } |
| |
| TEST_P(BlobCacheTest, GetWithFailedAllocator) { |
| unsigned char buf[3] = { 0xee, 0xee, 0xee }; |
| mBC->set("abcd", 4, "efgh", 4); |
| |
| // If allocator fails, verify that we set the value pointer to |
| // nullptr, and that we do not modify the buffer that the value |
| // pointer originally pointed to. |
| unsigned char *bufPtr = &buf[0]; |
| ASSERT_EQ(size_t(4), mBC->get("abcd", 4, &bufPtr, [](size_t) -> void* { return nullptr; })); |
| ASSERT_EQ(nullptr, bufPtr); |
| ASSERT_EQ(0xee, buf[0]); |
| ASSERT_EQ(0xee, buf[1]); |
| ASSERT_EQ(0xee, buf[2]); |
| } |
| |
| TEST_P(BlobCacheTest, GetDoesntAccessNullBuffer) { |
| mBC->set("abcd", 4, "efgh", 4); |
| ASSERT_EQ(size_t(4), mBC->get("abcd", 4, NULL, 0)); |
| } |
| |
| TEST_P(BlobCacheTest, MultipleSetsCacheLatestValue) { |
| unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; |
| mBC->set("abcd", 4, "efgh", 4); |
| mBC->set("abcd", 4, "ijkl", 4); |
| ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4)); |
| ASSERT_EQ('i', buf[0]); |
| ASSERT_EQ('j', buf[1]); |
| ASSERT_EQ('k', buf[2]); |
| ASSERT_EQ('l', buf[3]); |
| } |
| |
| TEST_P(BlobCacheTest, SecondSetKeepsFirstValueIfTooLarge) { |
| unsigned char buf[MAX_VALUE_SIZE+1] = { 0xee, 0xee, 0xee, 0xee }; |
| mBC->set("abcd", 4, "efgh", 4); |
| mBC->set("abcd", 4, buf, MAX_VALUE_SIZE+1); |
| ASSERT_EQ(size_t(4), mBC->get("abcd", 4, buf, 4)); |
| ASSERT_EQ('e', buf[0]); |
| ASSERT_EQ('f', buf[1]); |
| ASSERT_EQ('g', buf[2]); |
| ASSERT_EQ('h', buf[3]); |
| } |
| |
| TEST_P(BlobCacheTest, DoesntCacheIfKeyIsTooBig) { |
| char key[MAX_KEY_SIZE+1]; |
| unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; |
| for (int i = 0; i < MAX_KEY_SIZE+1; i++) { |
| key[i] = 'a'; |
| } |
| mBC->set(key, MAX_KEY_SIZE+1, "bbbb", 4); |
| |
| ASSERT_EQ(size_t(0), mBC->get(key, MAX_KEY_SIZE+1, buf, 4)); |
| ASSERT_EQ(0xee, buf[0]); |
| ASSERT_EQ(0xee, buf[1]); |
| ASSERT_EQ(0xee, buf[2]); |
| ASSERT_EQ(0xee, buf[3]); |
| |
| // If key is too large, verify that we do not call the allocator, |
| // that we set the value pointer to nullptr, and that we do not |
| // modify the buffer that the value pointer originally pointed to. |
| unsigned char *bufPtr = &buf[0]; |
| bool calledAlloc = false; |
| ASSERT_EQ(size_t(0), mBC->get(key, MAX_KEY_SIZE+1, &bufPtr, |
| [&calledAlloc](size_t) -> void* { |
| calledAlloc = true; |
| return nullptr; })); |
| ASSERT_EQ(false, calledAlloc); |
| ASSERT_EQ(nullptr, bufPtr); |
| ASSERT_EQ(0xee, buf[0]); |
| ASSERT_EQ(0xee, buf[1]); |
| ASSERT_EQ(0xee, buf[2]); |
| ASSERT_EQ(0xee, buf[3]); |
| } |
| |
| TEST_P(BlobCacheTest, DoesntCacheIfValueIsTooBig) { |
| unsigned char buf[MAX_VALUE_SIZE+1]; |
| for (int i = 0; i < MAX_VALUE_SIZE+1; i++) { |
| buf[i] = 'b'; |
| } |
| mBC->set("abcd", 4, buf, MAX_VALUE_SIZE+1); |
| for (int i = 0; i < MAX_VALUE_SIZE+1; i++) { |
| buf[i] = 0xee; |
| } |
| ASSERT_EQ(size_t(0), mBC->get("abcd", 4, buf, MAX_VALUE_SIZE+1)); |
| for (int i = 0; i < MAX_VALUE_SIZE+1; i++) { |
| SCOPED_TRACE(i); |
| ASSERT_EQ(0xee, buf[i]); |
| } |
| } |
| |
| TEST_P(BlobCacheTest, DoesntCacheIfKeyValuePairIsTooBig) { |
| // Check a testing assumptions |
| ASSERT_TRUE(MAX_TOTAL_SIZE < MAX_KEY_SIZE + MAX_VALUE_SIZE); |
| ASSERT_TRUE(MAX_KEY_SIZE < MAX_TOTAL_SIZE); |
| |
| enum { bufSize = MAX_TOTAL_SIZE - MAX_KEY_SIZE + 1 }; |
| |
| char key[MAX_KEY_SIZE]; |
| char buf[bufSize]; |
| for (int i = 0; i < MAX_KEY_SIZE; i++) { |
| key[i] = 'a'; |
| } |
| for (int i = 0; i < bufSize; i++) { |
| buf[i] = 'b'; |
| } |
| |
| mBC->set(key, MAX_KEY_SIZE, buf, MAX_VALUE_SIZE); |
| ASSERT_EQ(size_t(0), mBC->get(key, MAX_KEY_SIZE, NULL, 0)); |
| } |
| |
| TEST_P(BlobCacheTest, CacheMaxKeySizeSucceeds) { |
| char key[MAX_KEY_SIZE]; |
| unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; |
| for (int i = 0; i < MAX_KEY_SIZE; i++) { |
| key[i] = 'a'; |
| } |
| mBC->set(key, MAX_KEY_SIZE, "wxyz", 4); |
| ASSERT_EQ(size_t(4), mBC->get(key, MAX_KEY_SIZE, buf, 4)); |
| ASSERT_EQ('w', buf[0]); |
| ASSERT_EQ('x', buf[1]); |
| ASSERT_EQ('y', buf[2]); |
| ASSERT_EQ('z', buf[3]); |
| } |
| |
| TEST_P(BlobCacheTest, CacheMaxValueSizeSucceeds) { |
| char buf[MAX_VALUE_SIZE]; |
| for (int i = 0; i < MAX_VALUE_SIZE; i++) { |
| buf[i] = 'b'; |
| } |
| mBC->set("abcd", 4, buf, MAX_VALUE_SIZE); |
| for (int i = 0; i < MAX_VALUE_SIZE; i++) { |
| buf[i] = 0xee; |
| } |
| ASSERT_EQ(size_t(MAX_VALUE_SIZE), mBC->get("abcd", 4, buf, |
| MAX_VALUE_SIZE)); |
| for (int i = 0; i < MAX_VALUE_SIZE; i++) { |
| SCOPED_TRACE(i); |
| ASSERT_EQ('b', buf[i]); |
| } |
| } |
| |
| TEST_P(BlobCacheTest, CacheMaxKeyValuePairSizeSucceeds) { |
| // Check a testing assumption |
| ASSERT_TRUE(MAX_KEY_SIZE < MAX_TOTAL_SIZE); |
| |
| enum { bufSize = MAX_TOTAL_SIZE - MAX_KEY_SIZE }; |
| |
| char key[MAX_KEY_SIZE]; |
| char buf[bufSize]; |
| for (int i = 0; i < MAX_KEY_SIZE; i++) { |
| key[i] = 'a'; |
| } |
| for (int i = 0; i < bufSize; i++) { |
| buf[i] = 'b'; |
| } |
| |
| mBC->set(key, MAX_KEY_SIZE, buf, bufSize); |
| ASSERT_EQ(size_t(bufSize), mBC->get(key, MAX_KEY_SIZE, NULL, 0)); |
| } |
| |
| TEST_P(BlobCacheTest, CacheMinKeyAndValueSizeSucceeds) { |
| unsigned char buf[1] = { 0xee }; |
| mBC->set("x", 1, "y", 1); |
| ASSERT_EQ(size_t(1), mBC->get("x", 1, buf, 1)); |
| ASSERT_EQ('y', buf[0]); |
| } |
| |
| TEST_P(BlobCacheTest, CacheSizeDoesntExceedTotalLimit) { |
| for (int i = 0; i < 256; i++) { |
| uint8_t k = i; |
| mBC->set(&k, 1, "x", 1); |
| } |
| int numCached = 0; |
| for (int i = 0; i < 256; i++) { |
| uint8_t k = i; |
| if (mBC->get(&k, 1, NULL, 0) == 1) { |
| numCached++; |
| } |
| } |
| ASSERT_GE(MAX_TOTAL_SIZE / 2, numCached); |
| } |
| |
| TEST_P(BlobCacheTest, ExceedingTotalLimitHalvesCacheSize) { |
| if (GetParam().second == BlobCache::Capacity::FIT) |
| return; // test doesn't apply for this policy |
| |
| // Fill up the entire cache with 1 char key/value pairs. |
| const int maxEntries = MAX_TOTAL_SIZE / 2; |
| for (int i = 0; i < maxEntries; i++) { |
| uint8_t k = i; |
| mBC->set(&k, 1, "x", 1); |
| } |
| // Insert one more entry, causing a cache overflow. |
| { |
| uint8_t k = maxEntries; |
| mBC->set(&k, 1, "x", 1); |
| } |
| // Count the number of entries in the cache; and check which |
| // entries they are. |
| int numCached = 0; |
| for (int i = 0; i < maxEntries+1; i++) { |
| uint8_t k = i; |
| bool found = (mBC->get(&k, 1, NULL, 0) == 1); |
| if (found) |
| numCached++; |
| if (GetParam().first == BlobCache::Select::LRU) { |
| SCOPED_TRACE(i); |
| ASSERT_EQ(found, i >= maxEntries/2); |
| } |
| } |
| ASSERT_EQ(maxEntries/2 + 1, numCached); |
| } |
| |
| TEST_P(BlobCacheTest, ExceedingTotalLimitJustFitsSmallEntry) { |
| if (GetParam().second != BlobCache::Capacity::FIT) |
| return; // test doesn't apply for this policy |
| |
| // Fill up the entire cache with 1 char key/value pairs. |
| const int maxEntries = MAX_TOTAL_SIZE / 2; |
| for (int i = 0; i < maxEntries; i++) { |
| uint8_t k = i; |
| mBC->set(&k, 1, "x", 1); |
| } |
| // Insert one more entry, causing a cache overflow. |
| { |
| uint8_t k = maxEntries; |
| mBC->set(&k, 1, "x", 1); |
| } |
| // Count the number of entries in the cache. |
| int numCached = 0; |
| for (int i = 0; i < maxEntries+1; i++) { |
| uint8_t k = i; |
| if (mBC->get(&k, 1, NULL, 0) == 1) |
| numCached++; |
| } |
| ASSERT_EQ(maxEntries, numCached); |
| } |
| |
| // Also see corresponding test in nnCache_test.cpp |
| TEST_P(BlobCacheTest, ExceedingTotalLimitFitsBigEntry) { |
| // Fill up the entire cache with 1 char key/value pairs. |
| const int maxEntries = MAX_TOTAL_SIZE / 2; |
| for (int i = 0; i < maxEntries; i++) { |
| uint8_t k = i; |
| mBC->set(&k, 1, "x", 1); |
| } |
| // Insert one more entry, causing a cache overflow. |
| const int bigValueSize = std::min((MAX_TOTAL_SIZE * 3) / 4 - 1, int(MAX_VALUE_SIZE)); |
| ASSERT_GT(bigValueSize+1, MAX_TOTAL_SIZE / 2); // Check testing assumption |
| { |
| unsigned char buf[MAX_VALUE_SIZE]; |
| for (int i = 0; i < bigValueSize; i++) |
| buf[i] = 0xee; |
| uint8_t k = maxEntries; |
| mBC->set(&k, 1, buf, bigValueSize); |
| } |
| // Count the number and size of entries in the cache. |
| int numCached = 0; |
| size_t sizeCached = 0; |
| for (int i = 0; i < maxEntries+1; i++) { |
| uint8_t k = i; |
| size_t size = mBC->get(&k, 1, NULL, 0); |
| if (size) { |
| numCached++; |
| sizeCached += (size + 1); |
| } |
| } |
| switch (GetParam().second) { |
| case BlobCache::Capacity::HALVE: |
| // New value is too big for this cleaning algorithm. So |
| // we cleaned the cache, but did not insert the new value. |
| ASSERT_EQ(maxEntries/2, numCached); |
| ASSERT_EQ(size_t((maxEntries/2)*2), sizeCached); |
| break; |
| case BlobCache::Capacity::FIT: |
| case BlobCache::Capacity::FIT_HALVE: { |
| // We had to clean more than half the cache to fit the new |
| // value. |
| const int initialNumEntries = maxEntries; |
| const int initialSizeCached = initialNumEntries * 2; |
| const int initialFreeSpace = MAX_TOTAL_SIZE - initialSizeCached; |
| |
| // (bigValueSize + 1) = value size + key size |
| // trailing "+ 1" is in order to round up |
| // "/ 2" is because initial entries are size 2 (1 byte key, 1 byte value) |
| const int cleanNumEntries = ((bigValueSize + 1) - initialFreeSpace + 1) / 2; |
| |
| const int cleanSpace = cleanNumEntries * 2; |
| const int postCleanNumEntries = initialNumEntries - cleanNumEntries; |
| const int postCleanSizeCached = initialSizeCached - cleanSpace; |
| ASSERT_EQ(postCleanNumEntries + 1, numCached); |
| ASSERT_EQ(size_t(postCleanSizeCached + bigValueSize + 1), sizeCached); |
| |
| break; |
| } |
| default: |
| FAIL() << "Unknown Capacity value"; |
| } |
| } |
| |
| TEST_P(BlobCacheTest, FailedGetWithAllocator) { |
| // If get doesn't find anything, verify that we do not call the |
| // allocator, that we set the value pointer to nullptr, and that |
| // we do not modify the buffer that the value pointer originally |
| // pointed to. |
| unsigned char buf[1] = { 0xee }; |
| unsigned char *bufPtr = &buf[0]; |
| bool calledAlloc = false; |
| ASSERT_EQ(size_t(0), mBC->get("a", 1, &bufPtr, |
| [&calledAlloc](size_t) -> void* { |
| calledAlloc = true; |
| return nullptr; })); |
| ASSERT_EQ(false, calledAlloc); |
| ASSERT_EQ(nullptr, bufPtr); |
| ASSERT_EQ(0xee, buf[0]); |
| } |
| |
| TEST_P(BlobCacheTest, ExceedingTotalLimitRemovesLRUEntries) { |
| if (GetParam().first != BlobCache::Select::LRU) |
| return; // test doesn't apply for this policy |
| |
| // Fill up the entire cache with 1 char key/value pairs. |
| static const int maxEntries = MAX_TOTAL_SIZE / 2; |
| for (int i = 0; i < maxEntries; i++) { |
| uint8_t k = i; |
| mBC->set(&k, 1, "x", 1); |
| } |
| |
| // Access entries in some known pseudorandom order. |
| int accessSequence[maxEntries]; |
| std::iota(&accessSequence[0], &accessSequence[maxEntries], 0); |
| std::mt19937 randomEngine(MAX_TOTAL_SIZE /* seed */); |
| std::shuffle(&accessSequence[0], &accessSequence[maxEntries], randomEngine); |
| for (int i = 0; i < maxEntries; i++) { |
| uint8_t k = accessSequence[i]; |
| uint8_t buf[1]; |
| // If we were to pass NULL to get() as the value pointer, this |
| // won't count as an access for LRU purposes. |
| mBC->get(&k, 1, buf, 1); |
| } |
| |
| // Insert one more entry, causing a cache overflow. |
| { |
| uint8_t k = maxEntries; |
| mBC->set(&k, 1, "x", 1); |
| } |
| |
| // Check which entries are in the cache. We expect to see the |
| // "one more entry" we just added, and also the most-recently |
| // accessed (according to accessSequence). That is, we should |
| // find exactly the entries with the following keys: |
| // . maxEntries |
| // . accessSequence[j..maxEntries-1] for some 0 <= j < maxEntries |
| uint8_t k = maxEntries; |
| ASSERT_EQ(size_t(1), mBC->get(&k, 1, NULL, 0)); |
| bool foundAny = false; |
| for (int i = 0; i < maxEntries; i++) { |
| uint8_t k = accessSequence[i]; |
| bool found = (mBC->get(&k, 1, NULL, 0) == 1); |
| if (foundAny == found) |
| continue; |
| if (!foundAny) { |
| // found == true, so we just discovered j == i |
| foundAny = true; |
| } else { |
| // foundAny == true, found == false -- oops |
| FAIL() << "found [" << i-1 << "]th entry but not [" << i << "]th entry"; |
| } |
| } |
| } |
| |
| class BlobCacheFlattenTest : public BlobCacheTest { |
| protected: |
| virtual void SetUp() { |
| BlobCacheTest::SetUp(); |
| mBC2.reset(new BlobCache(MAX_KEY_SIZE, MAX_VALUE_SIZE, MAX_TOTAL_SIZE, GetParam())); |
| } |
| |
| virtual void TearDown() { |
| mBC2.reset(); |
| BlobCacheTest::TearDown(); |
| } |
| |
| void roundTrip() { |
| size_t size = mBC->getFlattenedSize(); |
| uint8_t* flat = new uint8_t[size]; |
| ASSERT_EQ(OK, mBC->flatten(flat, size)); |
| ASSERT_EQ(OK, mBC2->unflatten(flat, size)); |
| delete[] flat; |
| } |
| |
| sp<BlobCache> mBC2; |
| }; |
| |
| INSTANTIATE_TEST_CASE_P(Policy, BlobCacheFlattenTest, |
| ::testing::Values(BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::HALVE), |
| BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::HALVE), |
| |
| BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::FIT), |
| BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::FIT), |
| |
| BlobCache::Policy(BlobCache::Select::RANDOM, BlobCache::Capacity::FIT_HALVE), |
| BlobCache::Policy(BlobCache::Select::LRU, BlobCache::Capacity::FIT_HALVE))); |
| |
| TEST_P(BlobCacheFlattenTest, FlattenOneValue) { |
| unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; |
| mBC->set("abcd", 4, "efgh", 4); |
| roundTrip(); |
| ASSERT_EQ(size_t(4), mBC2->get("abcd", 4, buf, 4)); |
| ASSERT_EQ('e', buf[0]); |
| ASSERT_EQ('f', buf[1]); |
| ASSERT_EQ('g', buf[2]); |
| ASSERT_EQ('h', buf[3]); |
| } |
| |
| TEST_P(BlobCacheFlattenTest, FlattenFullCache) { |
| // Fill up the entire cache with 1 char key/value pairs. |
| const int maxEntries = MAX_TOTAL_SIZE / 2; |
| for (int i = 0; i < maxEntries; i++) { |
| uint8_t k = i; |
| mBC->set(&k, 1, &k, 1); |
| } |
| |
| roundTrip(); |
| |
| // Verify the deserialized cache |
| for (int i = 0; i < maxEntries; i++) { |
| uint8_t k = i; |
| uint8_t v = 0xee; |
| ASSERT_EQ(size_t(1), mBC2->get(&k, 1, &v, 1)); |
| ASSERT_EQ(k, v); |
| } |
| } |
| |
| TEST_P(BlobCacheFlattenTest, FlattenDoesntChangeCache) { |
| // Fill up the entire cache with 1 char key/value pairs. |
| const int maxEntries = MAX_TOTAL_SIZE / 2; |
| for (int i = 0; i < maxEntries; i++) { |
| uint8_t k = i; |
| mBC->set(&k, 1, &k, 1); |
| } |
| |
| size_t size = mBC->getFlattenedSize(); |
| uint8_t* flat = new uint8_t[size]; |
| ASSERT_EQ(OK, mBC->flatten(flat, size)); |
| delete[] flat; |
| |
| // Verify the cache that we just serialized |
| for (int i = 0; i < maxEntries; i++) { |
| uint8_t k = i; |
| uint8_t v = 0xee; |
| ASSERT_EQ(size_t(1), mBC->get(&k, 1, &v, 1)); |
| ASSERT_EQ(k, v); |
| } |
| } |
| |
| TEST_P(BlobCacheFlattenTest, FlattenCatchesBufferTooSmall) { |
| // Fill up the entire cache with 1 char key/value pairs. |
| const int maxEntries = MAX_TOTAL_SIZE / 2; |
| for (int i = 0; i < maxEntries; i++) { |
| uint8_t k = i; |
| mBC->set(&k, 1, &k, 1); |
| } |
| |
| size_t size = mBC->getFlattenedSize() - 1; |
| uint8_t* flat = new uint8_t[size]; |
| // ASSERT_EQ(BAD_VALUE, mBC->flatten(flat, size)); |
| // TODO: The above fails. I expect this is so because getFlattenedSize() |
| // overstimates the size by using PROPERTY_VALUE_MAX. |
| delete[] flat; |
| } |
| |
| TEST_P(BlobCacheFlattenTest, UnflattenCatchesBadMagic) { |
| unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; |
| mBC->set("abcd", 4, "efgh", 4); |
| |
| size_t size = mBC->getFlattenedSize(); |
| uint8_t* flat = new uint8_t[size]; |
| ASSERT_EQ(OK, mBC->flatten(flat, size)); |
| flat[1] = ~flat[1]; |
| |
| // Bad magic should cause an error. |
| ASSERT_EQ(BAD_VALUE, mBC2->unflatten(flat, size)); |
| delete[] flat; |
| |
| // The error should cause the unflatten to result in an empty cache |
| ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4)); |
| } |
| |
| TEST_P(BlobCacheFlattenTest, UnflattenCatchesBadBlobCacheVersion) { |
| unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; |
| mBC->set("abcd", 4, "efgh", 4); |
| |
| size_t size = mBC->getFlattenedSize(); |
| uint8_t* flat = new uint8_t[size]; |
| ASSERT_EQ(OK, mBC->flatten(flat, size)); |
| flat[5] = ~flat[5]; |
| |
| // Version mismatches shouldn't cause errors, but should not use the |
| // serialized entries |
| ASSERT_EQ(OK, mBC2->unflatten(flat, size)); |
| delete[] flat; |
| |
| // The version mismatch should cause the unflatten to result in an empty |
| // cache |
| ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4)); |
| } |
| |
| TEST_P(BlobCacheFlattenTest, UnflattenCatchesBadBlobCacheDeviceVersion) { |
| unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; |
| mBC->set("abcd", 4, "efgh", 4); |
| |
| size_t size = mBC->getFlattenedSize(); |
| uint8_t* flat = new uint8_t[size]; |
| ASSERT_EQ(OK, mBC->flatten(flat, size)); |
| flat[10] = ~flat[10]; |
| |
| // Version mismatches shouldn't cause errors, but should not use the |
| // serialized entries |
| ASSERT_EQ(OK, mBC2->unflatten(flat, size)); |
| delete[] flat; |
| |
| // The version mismatch should cause the unflatten to result in an empty |
| // cache |
| ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4)); |
| } |
| |
| TEST_P(BlobCacheFlattenTest, UnflattenCatchesBufferTooSmall) { |
| unsigned char buf[4] = { 0xee, 0xee, 0xee, 0xee }; |
| mBC->set("abcd", 4, "efgh", 4); |
| |
| size_t size = mBC->getFlattenedSize(); |
| uint8_t* flat = new uint8_t[size]; |
| ASSERT_EQ(OK, mBC->flatten(flat, size)); |
| |
| // A buffer truncation shouldt cause an error |
| // ASSERT_EQ(BAD_VALUE, mBC2->unflatten(flat, size-1)); |
| // TODO: The above appears to fail because getFlattenedSize() is |
| // conservative. |
| delete[] flat; |
| |
| // The error should cause the unflatten to result in an empty cache |
| ASSERT_EQ(size_t(0), mBC2->get("abcd", 4, buf, 4)); |
| } |
| |
| } // namespace android |