blob: 92fb178f959fbc77acc75d10a17c46b2c0e4a0ea [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Operations.h"
#include "CpuOperationUtils.h"
#include "tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h"
#include "Tracing.h"
namespace android {
namespace nn {
#define ANDROID_NN_POOLING_PARAMETERS \
tflite::PoolParams op_params; \
op_params.stride_height = stride_height; \
op_params.stride_width = stride_width; \
op_params.filter_height = filter_height; \
op_params.filter_width = filter_width; \
op_params.padding_values.height = padding_top; \
op_params.padding_values.width = padding_left;
bool averagePoolFloat32(const float* inputData, const Shape& inputShape,
int32_t padding_left, int32_t padding_right,
int32_t padding_top, int32_t padding_bottom,
int32_t stride_width, int32_t stride_height,
int32_t filter_width, int32_t filter_height, int32_t activation,
float* outputData, const Shape& outputShape) {
NNTRACE_TRANS("averagePoolFloat32");
ANDROID_NN_POOLING_PARAMETERS
float output_activation_min, output_activation_max;
CalculateActivationRangeFloat(activation, &output_activation_min,
&output_activation_max);
op_params.float_activation_min = output_activation_min;
op_params.float_activation_max = output_activation_max;
NNTRACE_COMP_SWITCH("optimized_ops::AveragePool");
tflite::optimized_ops::AveragePool(
op_params,
convertShapeToTflshape(inputShape), inputData,
convertShapeToTflshape(outputShape), outputData);
return true;
}
bool averagePoolQuant8(const uint8_t* inputData, const Shape& inputShape,
int32_t padding_left, int32_t padding_right,
int32_t padding_top, int32_t padding_bottom,
int32_t stride_width, int32_t stride_height,
int32_t filter_width, int32_t filter_height, int32_t activation,
uint8_t* outputData, const Shape& outputShape) {
NNTRACE_TRANS("averagePoolQuant8");
ANDROID_NN_POOLING_PARAMETERS
int32_t output_activation_min = 0;
int32_t output_activation_max = 0;
CalculateActivationRangeUint8(activation, outputShape,
&output_activation_min,
&output_activation_max);
op_params.quantized_activation_min = output_activation_min;
op_params.quantized_activation_max = output_activation_max;
NNTRACE_COMP_SWITCH("optimized_ops::AveragePool");
tflite::optimized_ops::AveragePool(
op_params,
convertShapeToTflshape(inputShape), inputData,
convertShapeToTflshape(outputShape), outputData);
return true;
}
bool l2PoolFloat32(const float* inputData, const Shape& inputShape,
int32_t padding_left, int32_t padding_right,
int32_t padding_top, int32_t padding_bottom,
int32_t stride_width, int32_t stride_height,
int32_t filter_width, int32_t filter_height, int32_t activation,
float* outputData, const Shape& outputShape) {
NNTRACE_TRANS("l2PoolFloat32");
ANDROID_NN_POOLING_PARAMETERS
float output_activation_min, output_activation_max;
CalculateActivationRangeFloat(activation, &output_activation_min,
&output_activation_max);
op_params.float_activation_min = output_activation_min;
op_params.float_activation_max = output_activation_max;
NNTRACE_COMP_SWITCH("optimized_ops::L2Pool");
tflite::optimized_ops::L2Pool(
op_params,
convertShapeToTflshape(inputShape), inputData,
convertShapeToTflshape(outputShape), outputData);
return true;
}
bool maxPoolFloat32(const float* inputData, const Shape& inputShape,
int32_t padding_left, int32_t padding_right,
int32_t padding_top, int32_t padding_bottom,
int32_t stride_width, int32_t stride_height,
int32_t filter_width, int32_t filter_height, int32_t activation,
float* outputData, const Shape& outputShape) {
NNTRACE_TRANS("maxPoolFloat32");
ANDROID_NN_POOLING_PARAMETERS
float output_activation_min, output_activation_max;
CalculateActivationRangeFloat(activation, &output_activation_min,
&output_activation_max);
op_params.float_activation_min = output_activation_min;
op_params.float_activation_max = output_activation_max;
NNTRACE_COMP_SWITCH("optimized_ops::MaxPool");
tflite::optimized_ops::MaxPool(
op_params,
convertShapeToTflshape(inputShape), inputData,
convertShapeToTflshape(outputShape), outputData);
return true;
}
bool maxPoolQuant8(const uint8_t* inputData, const Shape& inputShape,
int32_t padding_left, int32_t padding_right,
int32_t padding_top, int32_t padding_bottom,
int32_t stride_width, int32_t stride_height,
int32_t filter_width, int32_t filter_height, int32_t activation,
uint8_t* outputData, const Shape& outputShape) {
NNTRACE_TRANS("maxPoolQuant8");
ANDROID_NN_POOLING_PARAMETERS
int32_t output_activation_min = 0;
int32_t output_activation_max = 0;
CalculateActivationRangeUint8(activation, outputShape,
&output_activation_min,
&output_activation_max);
op_params.quantized_activation_min = output_activation_min;
op_params.quantized_activation_max = output_activation_max;
NNTRACE_COMP_SWITCH("optimized_ops::MaxPool");
tflite::optimized_ops::MaxPool(
op_params,
convertShapeToTflshape(inputShape), inputData,
convertShapeToTflshape(outputShape), outputData);
return true;
}
#undef ANDROID_NN_POOLING_PARAMETERS
} // namespace nn
} // namespace android