blob: 95eb38f531e35c3575b1423ac50498f05a003666 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Contains the implementation of the operations.
#define LOG_TAG "Operations"
#include "Operations.h"
#include "CpuOperationUtils.h"
#include "tensorflow/contrib/lite/kernels/internal/optimized/legacy_optimized_ops.h"
#include "tensorflow/contrib/lite/kernels/internal/reference/legacy_reference_ops.h"
#include "Tracing.h"
namespace android {
namespace nn {
#define ANDROID_NN_MACRO_DISPATCH(macro) \
switch (activation) { \
case (int32_t) FusedActivationFunc::NONE: \
macro(kNone); \
break; \
case (int32_t) FusedActivationFunc::RELU: \
macro(kRelu); \
break; \
case (int32_t) FusedActivationFunc::RELU1: \
macro(kRelu1); \
break; \
case (int32_t) FusedActivationFunc::RELU6: \
macro(kRelu6); \
break; \
default: \
LOG(ERROR) << "Unsupported fused activation function type"; \
return false; \
}
bool addFloat32(const float* in1, const Shape& shape1,
const float* in2, const Shape& shape2,
int32_t activation,
float* out, const Shape& shapeOut) {
NNTRACE_TRANS("addFloat32");
bool needBroadcast = !SameShape(shape1, shape2);
if (needBroadcast) {
NNTRACE_COMP_SWITCH("optimized_ops::BroadcastAdd");
#define ANDROID_NN_BROADCAST_ADD(activation) \
tflite::optimized_ops::BroadcastAdd<tflite::FusedActivationFunctionType::activation>( \
in1, convertShapeToDims(shape1), \
in2, convertShapeToDims(shape2), \
out, convertShapeToDims(shapeOut))
ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_BROADCAST_ADD)
#undef ANDROID_NN_BROADCAST_ADD
} else {
NNTRACE_COMP_SWITCH("optimized_ops::Add");
#define ANDROID_NN_ADD(activation) \
tflite::optimized_ops::Add<tflite::FusedActivationFunctionType::activation>( \
in1, convertShapeToDims(shape1), \
in2, convertShapeToDims(shape2), \
out, convertShapeToDims(shapeOut))
ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_ADD)
#undef ANDROID_NN_ADD
}
return true;
}
bool addQuant8(const uint8_t* in1, const Shape& shape1,
const uint8_t* in2, const Shape& shape2,
int32_t activation,
uint8_t* out, const Shape& shapeOut) {
NNTRACE_TRANS("addQuant8");
bool needBroadcast = !SameShape(shape1, shape2);
const int32_t input1_offset = -shape1.offset;
const int32_t input2_offset = -shape2.offset;
const int32_t output_offset = shapeOut.offset;
const int left_shift = 20;
const double twice_max_input_scale = 2 * std::max(shape1.scale, shape2.scale);
const double real_input1_multiplier = shape1.scale / twice_max_input_scale;
const double real_input2_multiplier = shape2.scale / twice_max_input_scale;
const double real_output_multiplier =
twice_max_input_scale /
((1 << left_shift) * shapeOut.scale);
int32_t input1_multiplier;
int32_t input1_shift;
if (!QuantizeMultiplierSmallerThanOne(real_input1_multiplier,
&input1_multiplier, &input1_shift)) {
return false;
}
int32_t input2_multiplier;
int32_t input2_shift;
if (!QuantizeMultiplierSmallerThanOne(real_input2_multiplier,
&input2_multiplier, &input2_shift)) {
return false;
}
int32_t output_multiplier;
int32_t output_shift;
if (!QuantizeMultiplierSmallerThanOne(real_output_multiplier,
&output_multiplier, &output_shift)) {
return false;
}
int32_t output_activation_min;
int32_t output_activation_max;
CalculateActivationRangeUint8(activation, shapeOut,
&output_activation_min,
&output_activation_max);
if (needBroadcast) {
NNTRACE_COMP_SWITCH("optimized_ops::BroadcastAdd");
#define ANDROID_NN_BROADCAST_ADD(activation) \
tflite::optimized_ops::BroadcastAdd<tflite::FusedActivationFunctionType::activation>( \
left_shift, \
in1, convertShapeToDims(shape1), \
input1_offset, input1_multiplier, input1_shift, \
in2, convertShapeToDims(shape2), \
input2_offset, input2_multiplier, input2_shift, \
output_offset, output_multiplier, output_shift, \
output_activation_min, output_activation_max, \
out, convertShapeToDims(shapeOut))
ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_BROADCAST_ADD)
#undef ANDROID_NN_BROADCAST_ADD
} else {
NNTRACE_COMP_SWITCH("optimized_ops::Add");
#define ANDROID_NN_NORMAL_ADD(activation) \
tflite::optimized_ops::Add<tflite::FusedActivationFunctionType::activation>( \
left_shift, \
in1, convertShapeToDims(shape1), \
input1_offset, input1_multiplier, input1_shift, \
in2, convertShapeToDims(shape2), \
input2_offset, input2_multiplier, input2_shift, \
output_offset, output_multiplier, output_shift, \
output_activation_min, output_activation_max, \
out, convertShapeToDims(shapeOut))
ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_NORMAL_ADD)
#undef ANDROID_NN_NORMAL_ADD
}
return true;
}
bool mulFloat32(const float* in1, const Shape& shape1,
const float* in2, const Shape& shape2,
int32_t activation,
float* out, const Shape& shapeOut) {
NNTRACE_TRANS("mulFloat32");
bool needBroadcast = !SameShape(shape1, shape2);
if (needBroadcast) {
NNTRACE_COMP_SWITCH("optimized_ops::BroadcastMul");
#define ANDROID_NN_BROADCAST_MUL(activation) \
tflite::optimized_ops::BroadcastMul<tflite::FusedActivationFunctionType::activation>( \
in1, convertShapeToDims(shape1), \
in2, convertShapeToDims(shape2), \
out, convertShapeToDims(shapeOut))
ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_BROADCAST_MUL)
#undef ANDROID_NN_BROADCAST_MUL
} else {
float output_activation_min, output_activation_max;
CalculateActivationRangeFloat(activation, &output_activation_min,
&output_activation_max);
NNTRACE_COMP_SWITCH("optimized_ops::Mul");
tflite::optimized_ops::Mul(
in1, convertShapeToDims(shape1),
in2, convertShapeToDims(shape2),
output_activation_min, output_activation_max,
out, convertShapeToDims(shapeOut));
}
return true;
}
bool mulQuant8(const uint8_t* in1, const Shape& shape1,
const uint8_t* in2, const Shape& shape2,
int32_t activation,
uint8_t* out, const Shape& shapeOut) {
NNTRACE_TRANS("mulQuant8");
const int32_t input1_offset = -shape1.offset;
const int32_t input2_offset = -shape2.offset;
const int32_t output_offset = shapeOut.offset;
const double input_product_scale = shape1.scale * shape2.scale;
const double real_multiplier = input_product_scale / shapeOut.scale;
int32 output_multiplier;
int output_shift;
if (!QuantizeMultiplierSmallerThanOne(real_multiplier, &output_multiplier,
&output_shift)) {
return false;
}
int32_t output_activation_min;
int32_t output_activation_max;
CalculateActivationRangeUint8(activation, shapeOut,
&output_activation_min,
&output_activation_max);
// Use BROADCAST version to handle the normal case.
NNTRACE_COMP_SWITCH("optimized_ops::BroadcastMul");
tflite::optimized_ops::BroadcastMul(
in1, convertShapeToDims(shape1), input1_offset,
in2, convertShapeToDims(shape2), input2_offset,
output_offset, output_multiplier, output_shift,
output_activation_min, output_activation_max,
out, convertShapeToDims(shapeOut));
return true;
}
bool floorFloat32(const float* inputData,
float* outputData,
const Shape& shape) {
NNTRACE_TRANS("floorFloat32");
tflite::Dims<4> dim = convertShapeToDims(shape);
NNTRACE_COMP_SWITCH("optimized_ops::Floor");
tflite::optimized_ops::Floor(inputData, dim, outputData, dim);
return true;
}
bool dequantizeQuant8ToFloat32(const uint8_t* inputData,
float* outputData,
const Shape& shape) {
NNTRACE_TRANS("dequantizeQuant8ToFloat32");
tflite::Dims<4> dim = convertShapeToDims(shape);
NNTRACE_COMP_SWITCH("optimized_ops::Dequantize");
tflite::optimized_ops::Dequantize(inputData, dim,
shape.offset, shape.scale,
outputData, dim);
return true;
}
bool subFloat32(const float* in1, const Shape& shape1,
const float* in2, const Shape& shape2,
int32_t activation,
float* out, const Shape& shapeOut) {
NNTRACE_TRANS("subFloat32");
NNTRACE_COMP_SWITCH("optimized_ops::Sub");
tflite::optimized_ops::Sub(
in1, convertShapeToDims(shape1),
in2, convertShapeToDims(shape2),
out, convertShapeToDims(shapeOut));
return true;
}
bool divFloat32(const float* in1, const Shape& shape1,
const float* in2, const Shape& shape2,
int32_t activation,
float* out, const Shape& shapeOut) {
NNTRACE_TRANS("divFloat32");
float output_activation_min, output_activation_max;
CalculateActivationRangeFloat(activation, &output_activation_min,
&output_activation_max);
bool needBroadcast = !SameShape(shape1, shape2);
if (needBroadcast) {
NNTRACE_COMP_SWITCH("optimized_ops::BroadcastDiv");
tflite::optimized_ops::BroadcastDiv(
in1, convertShapeToDims(shape1),
in2, convertShapeToDims(shape2),
output_activation_min, output_activation_max,
out, convertShapeToDims(shapeOut));
} else {
NNTRACE_COMP_SWITCH("optimized_ops::Div");
tflite::optimized_ops::Div(
in1, convertShapeToDims(shape1),
in2, convertShapeToDims(shape2),
output_activation_min, output_activation_max,
out, convertShapeToDims(shapeOut));
}
return true;
}
bool meanGeneric(const uint8_t* inputData, const Shape& inputShape,
const int32_t* axis, const Shape& axisShape, bool keepDims,
uint8_t* outputData, const Shape& outputShape) {
NNTRACE_TRANS("meanGeneric");
// Creates a temp index to iterate through input data.
int32_t* scratchBuffer = new int32_t[getNumberOfDimensions(inputShape)];
// Creates a temp tensor to store resolved axis given input data.
int32_t axisSize = static_cast<int32_t>(getSizeOfDimension(axisShape, 0));
int32_t* resolvedAxis = new int32_t[axisSize];
bool result = true;
if (inputShape.type == OperandType::TENSOR_FLOAT32) {
float* tempSumBuffer = new (std::nothrow) float[getNumberOfElements(outputShape)];
if (!tempSumBuffer) {
LOG(ERROR) << "Failed to allocate tempSumBuffer for MEAN";
result = false;
} else {
NNTRACE_COMP_SWITCH("optimized_ops::Mean");
tflite::reference_ops::Mean<float, float>(
const_cast<float*>(reinterpret_cast<const float*>(inputData)),
reinterpret_cast<const int*>(inputShape.dimensions.data()),
getNumberOfDimensions(inputShape),
reinterpret_cast<float*>(outputData),
reinterpret_cast<const int*>(outputShape.dimensions.data()),
getNumberOfDimensions(outputShape),
axis, axisSize, keepDims, scratchBuffer, resolvedAxis,
tempSumBuffer);
delete[] tempSumBuffer;
}
} else if (inputShape.type == OperandType::TENSOR_QUANT8_ASYMM) {
int32_t* tempSumBuffer = new (std::nothrow) int32_t[getNumberOfElements(outputShape)];
if (!tempSumBuffer) {
LOG(ERROR) << "Failed to allocate tempSumBuffer for MEAN";
result = false;
} else {
NNTRACE_COMP_SWITCH("optimized_ops::Mean");
tflite::reference_ops::Mean<uint8_t, int32_t>(
const_cast<uint8_t*>(inputData),
reinterpret_cast<const int*>(inputShape.dimensions.data()),
getNumberOfDimensions(inputShape),
outputData,
reinterpret_cast<const int*>(outputShape.dimensions.data()),
getNumberOfDimensions(outputShape),
axis, axisSize, keepDims, scratchBuffer, resolvedAxis,
tempSumBuffer);
delete[] tempSumBuffer;
}
} else {
LOG(ERROR) << "Unsupported data type";
result = false;
}
delete[] scratchBuffer;
delete[] resolvedAxis;
return result;
}
} // namespace nn
} // namespace android