| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "ExecutionBurstController" |
| |
| #include "ExecutionBurstController.h" |
| |
| #include <android-base/logging.h> |
| |
| #include <algorithm> |
| #include <cstring> |
| #include <limits> |
| #include <memory> |
| #include <string> |
| #include <thread> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| #include "HalInterfaces.h" |
| #include "Tracing.h" |
| #include "Utils.h" |
| |
| namespace android::nn { |
| namespace { |
| |
| using V1_2::FmqRequestDatum; |
| using V1_2::FmqResultDatum; |
| using V1_2::IBurstCallback; |
| using V1_2::IBurstContext; |
| using FmqRequestDescriptor = hardware::MQDescriptorSync<FmqRequestDatum>; |
| using FmqResultDescriptor = hardware::MQDescriptorSync<FmqResultDatum>; |
| |
| constexpr V1_2::Timing kNoTiming12 = {std::numeric_limits<uint64_t>::max(), |
| std::numeric_limits<uint64_t>::max()}; |
| |
| class BurstContextDeathHandler : public hardware::hidl_death_recipient { |
| public: |
| using Callback = std::function<void()>; |
| |
| BurstContextDeathHandler(const Callback& onDeathCallback) : mOnDeathCallback(onDeathCallback) { |
| CHECK(onDeathCallback != nullptr); |
| } |
| |
| void serviceDied(uint64_t /*cookie*/, const wp<hidl::base::V1_0::IBase>& /*who*/) override { |
| LOG(ERROR) << "BurstContextDeathHandler::serviceDied -- service unexpectedly died!"; |
| mOnDeathCallback(); |
| } |
| |
| private: |
| const Callback mOnDeathCallback; |
| }; |
| |
| } // anonymous namespace |
| |
| // serialize a request into a packet |
| std::vector<FmqRequestDatum> serialize(const V1_0::Request& request, V1_2::MeasureTiming measure, |
| const std::vector<int32_t>& slots) { |
| // count how many elements need to be sent for a request |
| size_t count = 2 + request.inputs.size() + request.outputs.size() + request.pools.size(); |
| for (const auto& input : request.inputs) { |
| count += input.dimensions.size(); |
| } |
| for (const auto& output : request.outputs) { |
| count += output.dimensions.size(); |
| } |
| |
| // create buffer to temporarily store elements |
| std::vector<FmqRequestDatum> data; |
| data.reserve(count); |
| |
| // package packetInfo |
| { |
| FmqRequestDatum datum; |
| datum.packetInformation( |
| {/*.packetSize=*/static_cast<uint32_t>(count), |
| /*.numberOfInputOperands=*/static_cast<uint32_t>(request.inputs.size()), |
| /*.numberOfOutputOperands=*/static_cast<uint32_t>(request.outputs.size()), |
| /*.numberOfPools=*/static_cast<uint32_t>(request.pools.size())}); |
| data.push_back(datum); |
| } |
| |
| // package input data |
| for (const auto& input : request.inputs) { |
| // package operand information |
| FmqRequestDatum datum; |
| datum.inputOperandInformation( |
| {/*.hasNoValue=*/input.hasNoValue, |
| /*.location=*/input.location, |
| /*.numberOfDimensions=*/static_cast<uint32_t>(input.dimensions.size())}); |
| data.push_back(datum); |
| |
| // package operand dimensions |
| for (uint32_t dimension : input.dimensions) { |
| FmqRequestDatum datum; |
| datum.inputOperandDimensionValue(dimension); |
| data.push_back(datum); |
| } |
| } |
| |
| // package output data |
| for (const auto& output : request.outputs) { |
| // package operand information |
| FmqRequestDatum datum; |
| datum.outputOperandInformation( |
| {/*.hasNoValue=*/output.hasNoValue, |
| /*.location=*/output.location, |
| /*.numberOfDimensions=*/static_cast<uint32_t>(output.dimensions.size())}); |
| data.push_back(datum); |
| |
| // package operand dimensions |
| for (uint32_t dimension : output.dimensions) { |
| FmqRequestDatum datum; |
| datum.outputOperandDimensionValue(dimension); |
| data.push_back(datum); |
| } |
| } |
| |
| // package pool identifier |
| for (int32_t slot : slots) { |
| FmqRequestDatum datum; |
| datum.poolIdentifier(slot); |
| data.push_back(datum); |
| } |
| |
| // package measureTiming |
| { |
| FmqRequestDatum datum; |
| datum.measureTiming(measure); |
| data.push_back(datum); |
| } |
| |
| // return packet |
| return data; |
| } |
| |
| // deserialize a packet into the result |
| std::optional<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>> |
| deserialize(const std::vector<FmqResultDatum>& data) { |
| using discriminator = FmqResultDatum::hidl_discriminator; |
| |
| std::vector<V1_2::OutputShape> outputShapes; |
| size_t index = 0; |
| |
| // validate packet information |
| if (index >= data.size() || |
| data.at(index).getDiscriminator() != discriminator::packetInformation) { |
| LOG(ERROR) << "FMQ Result packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage packet information |
| const FmqResultDatum::PacketInformation& packetInfo = data.at(index).packetInformation(); |
| index++; |
| const uint32_t packetSize = packetInfo.packetSize; |
| const V1_0::ErrorStatus errorStatus = packetInfo.errorStatus; |
| const uint32_t numberOfOperands = packetInfo.numberOfOperands; |
| |
| // verify packet size |
| if (data.size() != packetSize) { |
| LOG(ERROR) << "FMQ Result packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage operands |
| for (size_t operand = 0; operand < numberOfOperands; ++operand) { |
| // validate operand information |
| if (index >= data.size() || |
| data.at(index).getDiscriminator() != discriminator::operandInformation) { |
| LOG(ERROR) << "FMQ Result packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage operand information |
| const FmqResultDatum::OperandInformation& operandInfo = data.at(index).operandInformation(); |
| index++; |
| const bool isSufficient = operandInfo.isSufficient; |
| const uint32_t numberOfDimensions = operandInfo.numberOfDimensions; |
| |
| // unpackage operand dimensions |
| std::vector<uint32_t> dimensions; |
| dimensions.reserve(numberOfDimensions); |
| for (size_t i = 0; i < numberOfDimensions; ++i) { |
| // validate dimension |
| if (index >= data.size() || |
| data.at(index).getDiscriminator() != discriminator::operandDimensionValue) { |
| LOG(ERROR) << "FMQ Result packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage dimension |
| const uint32_t dimension = data.at(index).operandDimensionValue(); |
| index++; |
| |
| // store result |
| dimensions.push_back(dimension); |
| } |
| |
| // store result |
| outputShapes.push_back({/*.dimensions=*/dimensions, /*.isSufficient=*/isSufficient}); |
| } |
| |
| // validate execution timing |
| if (index >= data.size() || |
| data.at(index).getDiscriminator() != discriminator::executionTiming) { |
| LOG(ERROR) << "FMQ Result packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // unpackage execution timing |
| const V1_2::Timing timing = data.at(index).executionTiming(); |
| index++; |
| |
| // validate packet information |
| if (index != packetSize) { |
| LOG(ERROR) << "FMQ Result packet ill-formed"; |
| return std::nullopt; |
| } |
| |
| // return result |
| return std::make_tuple(errorStatus, std::move(outputShapes), timing); |
| } |
| |
| V1_0::ErrorStatus legacyConvertResultCodeToErrorStatus(int resultCode) { |
| return convertToV1_0(convertResultCodeToErrorStatus(resultCode)); |
| } |
| |
| std::pair<std::unique_ptr<ResultChannelReceiver>, const FmqResultDescriptor*> |
| ResultChannelReceiver::create(size_t channelLength, std::chrono::microseconds pollingTimeWindow) { |
| std::unique_ptr<FmqResultChannel> fmqResultChannel = |
| std::make_unique<FmqResultChannel>(channelLength, /*confEventFlag=*/true); |
| if (!fmqResultChannel->isValid()) { |
| LOG(ERROR) << "Unable to create ResultChannelReceiver"; |
| return {nullptr, nullptr}; |
| } |
| |
| const FmqResultDescriptor* descriptor = fmqResultChannel->getDesc(); |
| return std::make_pair( |
| std::make_unique<ResultChannelReceiver>(std::move(fmqResultChannel), pollingTimeWindow), |
| descriptor); |
| } |
| |
| ResultChannelReceiver::ResultChannelReceiver(std::unique_ptr<FmqResultChannel> fmqResultChannel, |
| std::chrono::microseconds pollingTimeWindow) |
| : mFmqResultChannel(std::move(fmqResultChannel)), kPollingTimeWindow(pollingTimeWindow) {} |
| |
| std::optional<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>> |
| ResultChannelReceiver::getBlocking() { |
| const auto packet = getPacketBlocking(); |
| if (!packet) { |
| return std::nullopt; |
| } |
| |
| return deserialize(*packet); |
| } |
| |
| void ResultChannelReceiver::invalidate() { |
| mValid = false; |
| |
| // force unblock |
| // ExecutionBurstController waits on a result packet after sending a |
| // request. If the driver containing ExecutionBurstServer crashes, the |
| // controller may be waiting on the futex. This force unblock wakes up any |
| // thread waiting on the futex. |
| // TODO: look for a different/better way to signal/notify the futex to |
| // wake up any thread waiting on it |
| FmqResultDatum datum; |
| datum.packetInformation({/*.packetSize=*/0, |
| /*.errorStatus=*/V1_0::ErrorStatus::GENERAL_FAILURE, |
| /*.numberOfOperands=*/0}); |
| mFmqResultChannel->writeBlocking(&datum, 1); |
| } |
| |
| std::optional<std::vector<FmqResultDatum>> ResultChannelReceiver::getPacketBlocking() { |
| if (!mValid) { |
| return std::nullopt; |
| } |
| |
| // First spend time polling if results are available in FMQ instead of |
| // waiting on the futex. Polling is more responsive (yielding lower |
| // latencies), but can take up more power, so only poll for a limited period |
| // of time. |
| |
| auto& getCurrentTime = std::chrono::high_resolution_clock::now; |
| const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow; |
| |
| while (getCurrentTime() < timeToStopPolling) { |
| // if class is being torn down, immediately return |
| if (!mValid.load(std::memory_order_relaxed)) { |
| return std::nullopt; |
| } |
| |
| // Check if data is available. If it is, immediately retrieve it and |
| // return. |
| const size_t available = mFmqResultChannel->availableToRead(); |
| if (available > 0) { |
| std::vector<FmqResultDatum> packet(available); |
| const bool success = mFmqResultChannel->read(packet.data(), available); |
| if (!success) { |
| LOG(ERROR) << "Error receiving packet"; |
| return std::nullopt; |
| } |
| return std::make_optional(std::move(packet)); |
| } |
| |
| std::this_thread::yield(); |
| } |
| |
| // If we get to this point, we either stopped polling because it was taking |
| // too long or polling was not allowed. Instead, perform a blocking call |
| // which uses a futex to save power. |
| |
| // wait for result packet and read first element of result packet |
| FmqResultDatum datum; |
| bool success = mFmqResultChannel->readBlocking(&datum, 1); |
| |
| // retrieve remaining elements |
| // NOTE: all of the data is already available at this point, so there's no |
| // need to do a blocking wait to wait for more data. This is known because |
| // in FMQ, all writes are published (made available) atomically. Currently, |
| // the producer always publishes the entire packet in one function call, so |
| // if the first element of the packet is available, the remaining elements |
| // are also available. |
| const size_t count = mFmqResultChannel->availableToRead(); |
| std::vector<FmqResultDatum> packet(count + 1); |
| std::memcpy(&packet.front(), &datum, sizeof(datum)); |
| success &= mFmqResultChannel->read(packet.data() + 1, count); |
| |
| if (!mValid) { |
| return std::nullopt; |
| } |
| |
| // ensure packet was successfully received |
| if (!success) { |
| LOG(ERROR) << "Error receiving packet"; |
| return std::nullopt; |
| } |
| |
| return std::make_optional(std::move(packet)); |
| } |
| |
| std::pair<std::unique_ptr<RequestChannelSender>, const FmqRequestDescriptor*> |
| RequestChannelSender::create(size_t channelLength) { |
| std::unique_ptr<FmqRequestChannel> fmqRequestChannel = |
| std::make_unique<FmqRequestChannel>(channelLength, /*confEventFlag=*/true); |
| if (!fmqRequestChannel->isValid()) { |
| LOG(ERROR) << "Unable to create RequestChannelSender"; |
| return {nullptr, nullptr}; |
| } |
| |
| const FmqRequestDescriptor* descriptor = fmqRequestChannel->getDesc(); |
| return std::make_pair(std::make_unique<RequestChannelSender>(std::move(fmqRequestChannel)), |
| descriptor); |
| } |
| |
| RequestChannelSender::RequestChannelSender(std::unique_ptr<FmqRequestChannel> fmqRequestChannel) |
| : mFmqRequestChannel(std::move(fmqRequestChannel)) {} |
| |
| bool RequestChannelSender::send(const V1_0::Request& request, V1_2::MeasureTiming measure, |
| const std::vector<int32_t>& slots) { |
| const std::vector<FmqRequestDatum> serialized = serialize(request, measure, slots); |
| return sendPacket(serialized); |
| } |
| |
| bool RequestChannelSender::sendPacket(const std::vector<FmqRequestDatum>& packet) { |
| if (!mValid) { |
| return false; |
| } |
| |
| if (packet.size() > mFmqRequestChannel->availableToWrite()) { |
| LOG(ERROR) |
| << "RequestChannelSender::sendPacket -- packet size exceeds size available in FMQ"; |
| return false; |
| } |
| |
| // Always send the packet with "blocking" because this signals the futex and |
| // unblocks the consumer if it is waiting on the futex. |
| return mFmqRequestChannel->writeBlocking(packet.data(), packet.size()); |
| } |
| |
| void RequestChannelSender::invalidate() { |
| mValid = false; |
| } |
| |
| hardware::Return<void> ExecutionBurstController::ExecutionBurstCallback::getMemories( |
| const hardware::hidl_vec<int32_t>& slots, getMemories_cb cb) { |
| std::lock_guard<std::mutex> guard(mMutex); |
| |
| // get all memories |
| hardware::hidl_vec<hardware::hidl_memory> memories(slots.size()); |
| std::transform(slots.begin(), slots.end(), memories.begin(), [this](int32_t slot) { |
| if (slot < 0 || static_cast<size_t>(slot) >= mMemoryCache.size()) { |
| return hardware::hidl_memory{}; |
| } |
| return mMemoryCache[slot]; |
| }); |
| |
| // ensure all memories are valid |
| if (!std::all_of(memories.begin(), memories.end(), |
| [](const hardware::hidl_memory& memory) { return memory.valid(); })) { |
| cb(V1_0::ErrorStatus::INVALID_ARGUMENT, {}); |
| return hardware::Void(); |
| } |
| |
| // return successful |
| cb(V1_0::ErrorStatus::NONE, std::move(memories)); |
| return hardware::Void(); |
| } |
| |
| std::vector<int32_t> ExecutionBurstController::ExecutionBurstCallback::getSlots( |
| const hardware::hidl_vec<hardware::hidl_memory>& memories, |
| const std::vector<intptr_t>& keys) { |
| std::lock_guard<std::mutex> guard(mMutex); |
| |
| // retrieve (or bind) all slots corresponding to memories |
| std::vector<int32_t> slots; |
| slots.reserve(memories.size()); |
| for (size_t i = 0; i < memories.size(); ++i) { |
| slots.push_back(getSlotLocked(memories[i], keys[i])); |
| } |
| return slots; |
| } |
| |
| std::pair<bool, int32_t> ExecutionBurstController::ExecutionBurstCallback::freeMemory( |
| intptr_t key) { |
| std::lock_guard<std::mutex> guard(mMutex); |
| |
| auto iter = mMemoryIdToSlot.find(key); |
| if (iter == mMemoryIdToSlot.end()) { |
| return {false, 0}; |
| } |
| const int32_t slot = iter->second; |
| mMemoryIdToSlot.erase(key); |
| mMemoryCache[slot] = {}; |
| mFreeSlots.push(slot); |
| return {true, slot}; |
| } |
| |
| int32_t ExecutionBurstController::ExecutionBurstCallback::getSlotLocked( |
| const hardware::hidl_memory& memory, intptr_t key) { |
| auto iter = mMemoryIdToSlot.find(key); |
| if (iter == mMemoryIdToSlot.end()) { |
| const int32_t slot = allocateSlotLocked(); |
| mMemoryIdToSlot[key] = slot; |
| mMemoryCache[slot] = memory; |
| return slot; |
| } else { |
| const int32_t slot = iter->second; |
| return slot; |
| } |
| } |
| |
| int32_t ExecutionBurstController::ExecutionBurstCallback::allocateSlotLocked() { |
| constexpr size_t kMaxNumberOfSlots = std::numeric_limits<int32_t>::max(); |
| |
| // if there is a free slot, use it |
| if (mFreeSlots.size() > 0) { |
| const int32_t slot = mFreeSlots.top(); |
| mFreeSlots.pop(); |
| return slot; |
| } |
| |
| // otherwise use a slot for the first time |
| CHECK(mMemoryCache.size() < kMaxNumberOfSlots) << "Exceeded maximum number of slots!"; |
| const int32_t slot = static_cast<int32_t>(mMemoryCache.size()); |
| mMemoryCache.emplace_back(); |
| |
| return slot; |
| } |
| |
| std::unique_ptr<ExecutionBurstController> ExecutionBurstController::create( |
| const sp<V1_2::IPreparedModel>& preparedModel, |
| std::chrono::microseconds pollingTimeWindow) { |
| // check inputs |
| if (preparedModel == nullptr) { |
| LOG(ERROR) << "ExecutionBurstController::create passed a nullptr"; |
| return nullptr; |
| } |
| |
| // create callback object |
| sp<ExecutionBurstCallback> callback = new ExecutionBurstCallback(); |
| |
| // create FMQ objects |
| auto [requestChannelSenderTemp, requestChannelDescriptor] = |
| RequestChannelSender::create(kExecutionBurstChannelLength); |
| auto [resultChannelReceiverTemp, resultChannelDescriptor] = |
| ResultChannelReceiver::create(kExecutionBurstChannelLength, pollingTimeWindow); |
| std::shared_ptr<RequestChannelSender> requestChannelSender = |
| std::move(requestChannelSenderTemp); |
| std::shared_ptr<ResultChannelReceiver> resultChannelReceiver = |
| std::move(resultChannelReceiverTemp); |
| |
| // check FMQ objects |
| if (!requestChannelSender || !resultChannelReceiver || !requestChannelDescriptor || |
| !resultChannelDescriptor) { |
| LOG(ERROR) << "ExecutionBurstController::create failed to create FastMessageQueue"; |
| return nullptr; |
| } |
| |
| // configure burst |
| V1_0::ErrorStatus errorStatus; |
| sp<IBurstContext> burstContext; |
| const hardware::Return<void> ret = preparedModel->configureExecutionBurst( |
| callback, *requestChannelDescriptor, *resultChannelDescriptor, |
| [&errorStatus, &burstContext](V1_0::ErrorStatus status, |
| const sp<IBurstContext>& context) { |
| errorStatus = status; |
| burstContext = context; |
| }); |
| |
| // check burst |
| if (!ret.isOk()) { |
| LOG(ERROR) << "IPreparedModel::configureExecutionBurst failed with description " |
| << ret.description(); |
| return nullptr; |
| } |
| if (errorStatus != V1_0::ErrorStatus::NONE) { |
| LOG(ERROR) << "IPreparedModel::configureExecutionBurst failed with status " |
| << toString(errorStatus); |
| return nullptr; |
| } |
| if (burstContext == nullptr) { |
| LOG(ERROR) << "IPreparedModel::configureExecutionBurst returned nullptr for burst"; |
| return nullptr; |
| } |
| |
| // create death handler object |
| BurstContextDeathHandler::Callback onDeathCallback = [requestChannelSender, |
| resultChannelReceiver] { |
| requestChannelSender->invalidate(); |
| resultChannelReceiver->invalidate(); |
| }; |
| const sp<BurstContextDeathHandler> deathHandler = new BurstContextDeathHandler(onDeathCallback); |
| |
| // linkToDeath registers a callback that will be invoked on service death to |
| // proactively handle service crashes. If the linkToDeath call fails, |
| // asynchronous calls are susceptible to hangs if the service crashes before |
| // providing the response. |
| const hardware::Return<bool> deathHandlerRet = burstContext->linkToDeath(deathHandler, 0); |
| if (!deathHandlerRet.isOk() || deathHandlerRet != true) { |
| LOG(ERROR) << "ExecutionBurstController::create -- Failed to register a death recipient " |
| "for the IBurstContext object."; |
| return nullptr; |
| } |
| |
| // make and return controller |
| return std::make_unique<ExecutionBurstController>(requestChannelSender, resultChannelReceiver, |
| burstContext, callback, deathHandler); |
| } |
| |
| ExecutionBurstController::ExecutionBurstController( |
| const std::shared_ptr<RequestChannelSender>& requestChannelSender, |
| const std::shared_ptr<ResultChannelReceiver>& resultChannelReceiver, |
| const sp<IBurstContext>& burstContext, const sp<ExecutionBurstCallback>& callback, |
| const sp<hardware::hidl_death_recipient>& deathHandler) |
| : mRequestChannelSender(requestChannelSender), |
| mResultChannelReceiver(resultChannelReceiver), |
| mBurstContext(burstContext), |
| mMemoryCache(callback), |
| mDeathHandler(deathHandler) {} |
| |
| ExecutionBurstController::~ExecutionBurstController() { |
| // It is safe to ignore any errors resulting from this unlinkToDeath call |
| // because the ExecutionBurstController object is already being destroyed |
| // and its underlying IBurstContext object is no longer being used by the NN |
| // runtime. |
| if (mDeathHandler) { |
| mBurstContext->unlinkToDeath(mDeathHandler).isOk(); |
| } |
| } |
| |
| static std::tuple<int, std::vector<V1_2::OutputShape>, V1_2::Timing, bool> getExecutionResult( |
| V1_0::ErrorStatus status, std::vector<V1_2::OutputShape> outputShapes, V1_2::Timing timing, |
| bool fallback) { |
| auto [n, checkedOutputShapes, checkedTiming] = |
| getExecutionResult(convertToV1_3(status), std::move(outputShapes), timing); |
| return {n, convertToV1_2(checkedOutputShapes), convertToV1_2(checkedTiming), fallback}; |
| } |
| |
| std::tuple<int, std::vector<V1_2::OutputShape>, V1_2::Timing, bool> |
| ExecutionBurstController::compute(const V1_0::Request& request, V1_2::MeasureTiming measure, |
| const std::vector<intptr_t>& memoryIds) { |
| // This is the first point when we know an execution is occurring, so begin |
| // to collect systraces. Note that the first point we can begin collecting |
| // systraces in ExecutionBurstServer is when the RequestChannelReceiver |
| // realizes there is data in the FMQ, so ExecutionBurstServer collects |
| // systraces at different points in the code. |
| NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstController::compute"); |
| |
| std::lock_guard<std::mutex> guard(mMutex); |
| |
| // send request packet |
| const std::vector<int32_t> slots = mMemoryCache->getSlots(request.pools, memoryIds); |
| const bool success = mRequestChannelSender->send(request, measure, slots); |
| if (!success) { |
| LOG(ERROR) << "Error sending FMQ packet"; |
| // only use fallback execution path if the packet could not be sent |
| return getExecutionResult(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming12, |
| /*fallback=*/true); |
| } |
| |
| // get result packet |
| const auto result = mResultChannelReceiver->getBlocking(); |
| if (!result) { |
| LOG(ERROR) << "Error retrieving FMQ packet"; |
| // only use fallback execution path if the packet could not be sent |
| return getExecutionResult(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming12, |
| /*fallback=*/false); |
| } |
| |
| // unpack results and return (only use fallback execution path if the |
| // packet could not be sent) |
| auto [status, outputShapes, timing] = std::move(*result); |
| return getExecutionResult(status, std::move(outputShapes), timing, /*fallback=*/false); |
| } |
| |
| void ExecutionBurstController::freeMemory(intptr_t key) { |
| std::lock_guard<std::mutex> guard(mMutex); |
| |
| bool valid; |
| int32_t slot; |
| std::tie(valid, slot) = mMemoryCache->freeMemory(key); |
| if (valid) { |
| mBurstContext->freeMemory(slot).isOk(); |
| } |
| } |
| |
| } // namespace android::nn |