blob: 0d29c7a77abe07e3492b5883d9295245efe2c8a3 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Operations.h"
#include "OperationsUtils.h"
#include "internal/optimized/optimized_ops.h"
namespace android {
namespace nn {
#define ANDROID_NN_POOLING_PARAMETERS \
uint32_t height = getSizeOfDimension(inputShape, 1); \
uint32_t width = getSizeOfDimension(inputShape, 2); \
uint32_t outHeight = getSizeOfDimension(outputShape, 1); \
uint32_t outWidth = getSizeOfDimension(outputShape, 2); \
\
uint32_t paddingHeight = (uint32_t)padding_top; \
uint32_t paddingWidth = (uint32_t)padding_left;
bool averagePoolFloat32(const float* inputData, const Shape& inputShape,
int32_t padding_left, int32_t padding_right,
int32_t padding_top, int32_t padding_bottom,
int32_t stride_width, int32_t stride_height,
int32_t filter_width, int32_t filter_height, int32_t activation,
float* outputData, const Shape& outputShape) {
ANDROID_NN_POOLING_PARAMETERS
#define ANDROID_NN_AVERAGE_POOL(activation) \
optimized_ops::AveragePool<FusedActivationFunctionType::activation>( \
inputData, convertShapeToDims(inputShape), \
stride_width, paddingWidth, paddingHeight, \
filter_width, filter_height, \
outputData, convertShapeToDims(outputShape))
ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_AVERAGE_POOL)
#undef ANDROID_NN_AVERAGE_POOL
return true;
}
bool averagePoolQuant8(const uint8_t* inputData, const Shape& inputShape,
int32_t padding_left, int32_t padding_right,
int32_t padding_top, int32_t padding_bottom,
int32_t stride_width, int32_t stride_height,
int32_t filter_width, int32_t filter_height, int32_t activation,
uint8_t* outputData, const Shape& outputShape) {
ANDROID_NN_POOLING_PARAMETERS
int32_t output_activation_min = 0;
int32_t output_activation_max = 0;
CalculateActivationRangeUint8(activation, outputShape,
&output_activation_min,
&output_activation_max);
#define ANDROID_NN_AVERAGE_POOL(activation) \
optimized_ops::AveragePool<FusedActivationFunctionType::activation>( \
inputData, convertShapeToDims(inputShape), \
stride_width, paddingWidth, paddingHeight, \
filter_width, filter_height, \
output_activation_min, output_activation_max, \
outputData, convertShapeToDims(outputShape))
ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_AVERAGE_POOL)
#undef ANDROID_NN_AVERAGE_POOL
return true;
}
bool l2PoolFloat32(const float* inputData, const Shape& inputShape,
int32_t padding_left, int32_t padding_right,
int32_t padding_top, int32_t padding_bottom,
int32_t stride_width, int32_t stride_height,
int32_t filter_width, int32_t filter_height, int32_t activation,
float* outputData, const Shape& outputShape) {
ANDROID_NN_POOLING_PARAMETERS
#define ANDROID_NN_L2_POOL(activation) \
optimized_ops::L2Pool<FusedActivationFunctionType::activation>( \
inputData, convertShapeToDims(inputShape), \
stride_width, paddingWidth, paddingHeight, \
filter_width, filter_height, \
outputData, convertShapeToDims(outputShape))
ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_L2_POOL)
#undef ANDROID_NN_L2_POOL
return true;
}
bool maxPoolFloat32(const float* inputData, const Shape& inputShape,
int32_t padding_left, int32_t padding_right,
int32_t padding_top, int32_t padding_bottom,
int32_t stride_width, int32_t stride_height,
int32_t filter_width, int32_t filter_height, int32_t activation,
float* outputData, const Shape& outputShape) {
ANDROID_NN_POOLING_PARAMETERS
#define ANDROID_NN_MAX_POOL(activation) \
optimized_ops::MaxPool<FusedActivationFunctionType::activation>( \
inputData, convertShapeToDims(inputShape), \
stride_width, paddingWidth, paddingHeight, \
filter_width, filter_height, \
outputData, convertShapeToDims(outputShape))
ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_MAX_POOL)
#undef ANDROID_NN_MAX_POOL
return true;
}
bool maxPoolQuant8(const uint8_t* inputData, const Shape& inputShape,
int32_t padding_left, int32_t padding_right,
int32_t padding_top, int32_t padding_bottom,
int32_t stride_width, int32_t stride_height,
int32_t filter_width, int32_t filter_height, int32_t activation,
uint8_t* outputData, const Shape& outputShape) {
ANDROID_NN_POOLING_PARAMETERS
int32_t output_activation_min = 0;
int32_t output_activation_max = 0;
CalculateActivationRangeUint8(activation, outputShape,
&output_activation_min,
&output_activation_max);
#define ANDROID_NN_MAX_POOL(activation) \
optimized_ops::MaxPool<FusedActivationFunctionType::activation>( \
inputData, convertShapeToDims(inputShape), \
stride_width, paddingWidth, paddingHeight, \
filter_width, filter_height, \
output_activation_min, output_activation_max, \
outputData, convertShapeToDims(outputShape))
ANDROID_NN_MACRO_DISPATCH(ANDROID_NN_MAX_POOL)
#undef ANDROID_NN_MAX_POOL
return true;
}
#undef ANDROID_NN_POOLING_PARAMETERS
} // namespace nn
} // namespace android