blob: 6c46965e6a0974c20e2a132829faf07c56a75537 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Contains the implementation of the operations.
#define LOG_TAG "Operations"
#include "Operations.h"
#include "OperationsUtils.h"
#include "internal/optimized/optimized_ops.h"
namespace android {
namespace nn {
bool reshapeGeneric(const void* inputData, const Shape& inputShape,
void* outputData, const Shape& outputShape) {
size_t count = sizeOfData(inputShape.type, inputShape.dimensions);
memcpy(outputData, inputData, count);
return true;
}
bool resizeBilinearFloat32(const float* inputData, const Shape& inputShape,
float* outputData, const Shape& outputShape) {
int32_t height = (int32_t) getSizeOfDimension(outputShape, 1);
int32_t width = (int32_t) getSizeOfDimension(outputShape, 2);
int32_t outDimData[2] = {height, width};
// We have to fake a tensor here, to satisfy ResizeBilinear().
Shape outDimShape;
outDimShape.dimensions = {1, 1, 1, 2};
optimized_ops::ResizeBilinear(
inputData, convertShapeToDims(inputShape),
outDimData, convertShapeToDims(outDimShape),
outputData, convertShapeToDims(outputShape));
return true;
}
bool depthToSpaceGeneric(const uint8_t* inputData, const Shape& inputShape,
int32_t blockSize,
uint8_t* outputData, const Shape& outputShape) {
if (inputShape.type == OperandType::TENSOR_FLOAT32) {
optimized_ops::DepthToSpace(
reinterpret_cast<const float*>(inputData),
convertShapeToDims(inputShape),
blockSize,
reinterpret_cast<float*>(outputData),
convertShapeToDims(outputShape));
} else if (inputShape.type == OperandType::TENSOR_QUANT8_ASYMM) {
optimized_ops::DepthToSpace(
reinterpret_cast<const uint8_t*>(inputData),
convertShapeToDims(inputShape),
blockSize,
reinterpret_cast<uint8_t*>(outputData),
convertShapeToDims(outputShape));
} else {
LOG(ERROR) << "Unsupported data type";
return false;
}
return true;
}
bool spaceToDepthGeneric(const uint8_t* inputData, const Shape& inputShape,
int32_t blockSize,
uint8_t* outputData, const Shape& outputShape) {
if (inputShape.type == OperandType::TENSOR_FLOAT32) {
optimized_ops::SpaceToDepth(
reinterpret_cast<const float*>(inputData),
convertShapeToDims(inputShape),
blockSize,
reinterpret_cast<float*>(outputData),
convertShapeToDims(outputShape));
} else if (inputShape.type == OperandType::TENSOR_QUANT8_ASYMM) {
optimized_ops::SpaceToDepth(
reinterpret_cast<const uint8_t*>(inputData),
convertShapeToDims(inputShape),
blockSize,
reinterpret_cast<uint8_t*>(outputData),
convertShapeToDims(outputShape));
} else {
LOG(ERROR) << "Unsupported data type";
return false;
}
return true;
}
} // namespace nn
} // namespace android