| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| // Contains the implementation of the operations. |
| |
| #define LOG_TAG "Operations" |
| |
| #include "Operations.h" |
| #include "OperationsUtils.h" |
| |
| #include "internal/optimized/optimized_ops.h" |
| |
| namespace android { |
| namespace nn { |
| |
| bool reshapeGeneric(const void* inputData, const Shape& inputShape, |
| void* outputData, const Shape& outputShape) { |
| size_t count = sizeOfData(inputShape.type, inputShape.dimensions); |
| memcpy(outputData, inputData, count); |
| return true; |
| } |
| |
| bool resizeBilinearFloat32(const float* inputData, const Shape& inputShape, |
| float* outputData, const Shape& outputShape) { |
| int32_t height = (int32_t) getSizeOfDimension(outputShape, 1); |
| int32_t width = (int32_t) getSizeOfDimension(outputShape, 2); |
| |
| int32_t outDimData[2] = {height, width}; |
| // We have to fake a tensor here, to satisfy ResizeBilinear(). |
| Shape outDimShape; |
| outDimShape.dimensions = {1, 1, 1, 2}; |
| |
| optimized_ops::ResizeBilinear( |
| inputData, convertShapeToDims(inputShape), |
| outDimData, convertShapeToDims(outDimShape), |
| outputData, convertShapeToDims(outputShape)); |
| return true; |
| } |
| |
| bool depthToSpaceGeneric(const uint8_t* inputData, const Shape& inputShape, |
| int32_t blockSize, |
| uint8_t* outputData, const Shape& outputShape) { |
| if (inputShape.type == OperandType::TENSOR_FLOAT32) { |
| optimized_ops::DepthToSpace( |
| reinterpret_cast<const float*>(inputData), |
| convertShapeToDims(inputShape), |
| blockSize, |
| reinterpret_cast<float*>(outputData), |
| convertShapeToDims(outputShape)); |
| } else if (inputShape.type == OperandType::TENSOR_QUANT8_ASYMM) { |
| optimized_ops::DepthToSpace( |
| reinterpret_cast<const uint8_t*>(inputData), |
| convertShapeToDims(inputShape), |
| blockSize, |
| reinterpret_cast<uint8_t*>(outputData), |
| convertShapeToDims(outputShape)); |
| } else { |
| LOG(ERROR) << "Unsupported data type"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool spaceToDepthGeneric(const uint8_t* inputData, const Shape& inputShape, |
| int32_t blockSize, |
| uint8_t* outputData, const Shape& outputShape) { |
| if (inputShape.type == OperandType::TENSOR_FLOAT32) { |
| optimized_ops::SpaceToDepth( |
| reinterpret_cast<const float*>(inputData), |
| convertShapeToDims(inputShape), |
| blockSize, |
| reinterpret_cast<float*>(outputData), |
| convertShapeToDims(outputShape)); |
| } else if (inputShape.type == OperandType::TENSOR_QUANT8_ASYMM) { |
| optimized_ops::SpaceToDepth( |
| reinterpret_cast<const uint8_t*>(inputData), |
| convertShapeToDims(inputShape), |
| blockSize, |
| reinterpret_cast<uint8_t*>(outputData), |
| convertShapeToDims(outputShape)); |
| } else { |
| LOG(ERROR) << "Unsupported data type"; |
| return false; |
| } |
| return true; |
| } |
| |
| } // namespace nn |
| } // namespace android |