| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "SVDF.h" |
| |
| #include "CpuExecutor.h" |
| #include "HalInterfaces.h" |
| |
| namespace android { |
| namespace nn { |
| |
| namespace { |
| |
| // TODO: Implement this using circular buffer instead. |
| // This is here temporarily only to show the logic. |
| void svdf_right_shift_state(float* state, int state_len, float shift_value) { |
| for (int i = 0; i < state_len - 1; i++) { |
| state[i] = state[i + 1]; |
| } |
| state[state_len - 1] = shift_value; |
| } |
| |
| int32_t getInt32ScalarData(RunTimeOperandInfo& info) { |
| int32_t * data = reinterpret_cast<int32_t*>(info.buffer); |
| return data[0]; |
| } |
| |
| } |
| |
| SVDF::SVDF(const Operation& operation, |
| std::vector<RunTimeOperandInfo>& operands) { |
| auto GetInput = [&operation, |
| &operands](uint32_t index) -> const RunTimeOperandInfo* { |
| const std::vector<uint32_t>& inputs = operation.inputs; |
| const int index_of_operand = inputs[index]; |
| if (index_of_operand < 0) { |
| return nullptr; |
| } |
| return &operands[index_of_operand]; |
| }; |
| |
| auto GetOutput = [&operation, |
| &operands](uint32_t index) -> RunTimeOperandInfo* { |
| const std::vector<uint32_t>& outputs = operation.outputs; |
| const int index_of_operand = outputs[index]; |
| // Expects index of operand in range. |
| return &operands[index_of_operand]; |
| }; |
| |
| input_ = GetInput(kInputTensor); |
| weights_feature_ = GetInput(kWeightsFeatureTensor); |
| weights_time_ = GetInput(kWeightsTimeTensor); |
| bias_ = GetInput(kBiasTensor); |
| |
| params_.rank_ = getInt32ScalarData(operands[operation.inputs[kRankParam]]); |
| params_.activation_ = static_cast<ActivationFn>(getInt32ScalarData(operands[operation.inputs[kActivationParam]])); |
| |
| state_ = GetOutput(kStateTensor); |
| output_ = GetOutput(kOutputTensor); |
| } |
| |
| bool SVDF::Eval() { |
| const int batch_size = input_->shape().dimensions[0]; |
| const int input_size = input_->shape().dimensions[1]; |
| const int num_units = weights_feature_->shape().dimensions[0]; |
| const int memory_size = weights_time_->shape().dimensions[1]; |
| const int weights_feature_stride = weights_feature_->shape().dimensions[1]; |
| const int weights_time_stride = weights_time_->shape().dimensions[1]; |
| |
| // Initialize weights_feature and weights_time pointers. |
| const float* weights_feature_ptr = reinterpret_cast<float *>(weights_feature_->buffer); |
| const float* weights_time_ptr = reinterpret_cast<float *>(weights_time_->buffer); |
| |
| // For each batch |
| for (int b = 0; b < batch_size; b++) { |
| // Initialize the pointer to input, output and bias. |
| const float* input_ptr_batch = reinterpret_cast<float *>(input_->buffer) + b * input_size; |
| float* output_ptr_batch = reinterpret_cast<float*>(output_->buffer) + b * num_units; |
| float* state_ptr_batch = reinterpret_cast<float*>(state_->buffer) + b * (memory_size - 1) * num_units; |
| |
| // For each unit |
| for (int c = 0; c < num_units; c++) { |
| float activation = 0.0; |
| |
| // tf.nn.conv1d(inputs, weights_feature, feature_dim, "VALID") |
| for (int j = 0; j < input_size; j++) { |
| activation += input_ptr_batch[j] * weights_feature_ptr[j]; |
| } |
| |
| // Initialize state pointer for unit 'c'. |
| float* state_ptr = state_ptr_batch + c * (memory_size - 1); |
| |
| // Apply bias if bias tensor exists. |
| output_ptr_batch[c] = bias_->buffer ? reinterpret_cast<float *>(bias_->buffer)[c] : 0.f; |
| |
| // output = tf.matmul(state, weights_time) |
| output_ptr_batch[c] += weights_time_ptr[memory_size - 1] * activation; |
| for (int j = 0; j < memory_size - 1; j++) { |
| output_ptr_batch[c] += weights_time_ptr[j] * state_ptr[j]; |
| } |
| |
| // Apply activation. |
| output_ptr_batch[c] = |
| (ActivationFunctor(params_.activation_))(output_ptr_batch[c]); |
| |
| // Right shift the state and concatenate with activation. |
| svdf_right_shift_state(state_ptr, memory_size - 1, activation); |
| |
| // Update weight pointers. |
| weights_feature_ptr += weights_feature_stride; |
| weights_time_ptr += weights_time_stride; |
| } |
| // Reset weight pointers for next batch. |
| weights_feature_ptr = reinterpret_cast<float*>(weights_feature_->buffer); |
| weights_time_ptr = reinterpret_cast<float*>(weights_time_->buffer); |
| } |
| return true; |
| } |
| |
| } // namespace nn |
| } // namespace android |