| /* |
| * Copyright (C) 2018 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| #include "TopK_V2.h" |
| |
| #include "OperationsUtils.h" |
| |
| #include <algorithm> |
| |
| namespace android { |
| namespace nn { |
| namespace topk_v2 { |
| |
| namespace { |
| |
| template <typename T> |
| bool evalGeneric(const T* inputData, const Shape& inputShape, const int32_t k, T* valuesData, |
| const Shape& /*valuesShape*/, int32_t* indicesData, |
| const Shape& /*indicesShape*/) { |
| const int rowSize = inputShape.dimensions.back(); |
| const int totalSize = getNumberOfElements(inputShape); |
| std::vector<std::pair<T, int32_t>> values(rowSize); |
| T* curOutputValue = valuesData; |
| int32_t* curOutputIndex = indicesData; |
| for (int rowBegin = 0; rowBegin < totalSize; rowBegin += rowSize) { |
| for (int i = 0; i < rowSize; ++i) { |
| values[i] = std::make_pair(inputData[rowBegin + i], i); |
| } |
| std::nth_element(values.begin(), values.begin() + (rowSize - k), values.end()); |
| std::sort(values.begin() + (rowSize - k), values.end()); |
| std::reverse(values.begin(), values.end()); |
| for (int i = 0; i < k; ++i) { |
| *curOutputValue = values[i].first; |
| *curOutputIndex = values[i].second; |
| curOutputValue++; |
| curOutputIndex++; |
| } |
| } |
| return true; |
| } |
| |
| } // namespace |
| |
| bool prepare(const Shape& input, int32_t k, Shape* values, Shape* indices) { |
| NN_CHECK(k > 0); |
| NN_CHECK(k <= input.dimensions.back()); |
| |
| values->dimensions = input.dimensions; |
| values->dimensions.back() = k; |
| indices->dimensions = input.dimensions; |
| indices->dimensions.back() = k; |
| return true; |
| } |
| |
| bool eval(const void* inputData, const Shape& inputShape, const int32_t k, void* valuesData, |
| const Shape& valuesShape, void* indicesData, const Shape& indicesShape) { |
| switch (inputShape.type) { |
| case OperandType::TENSOR_FLOAT16: { |
| return evalGeneric(reinterpret_cast<const _Float16*>(inputData), inputShape, k, |
| reinterpret_cast<_Float16*>(valuesData), valuesShape, |
| reinterpret_cast<int32_t*>(indicesData), indicesShape); |
| } break; |
| case OperandType::TENSOR_FLOAT32: { |
| return evalGeneric(reinterpret_cast<const float*>(inputData), inputShape, k, |
| reinterpret_cast<float*>(valuesData), valuesShape, |
| reinterpret_cast<int32_t*>(indicesData), indicesShape); |
| } break; |
| case OperandType::TENSOR_INT32: { |
| return evalGeneric(reinterpret_cast<const int32_t*>(inputData), inputShape, k, |
| reinterpret_cast<int32_t*>(valuesData), valuesShape, |
| reinterpret_cast<int32_t*>(indicesData), indicesShape); |
| } break; |
| case OperandType::TENSOR_QUANT8_ASYMM: { |
| return evalGeneric(reinterpret_cast<const uint8_t*>(inputData), inputShape, k, |
| reinterpret_cast<uint8_t*>(valuesData), valuesShape, |
| reinterpret_cast<int32_t*>(indicesData), indicesShape); |
| } break; |
| default: { |
| LOG(ERROR) << "Unsupported data type: " << toString(inputShape.type); |
| return false; |
| } |
| } |
| } |
| |
| } // namespace topk_v2 |
| } // namespace nn |
| } // namespace android |