| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef FRAMEWORKS_ML_NN_COMMON_UTILS_H |
| #define FRAMEWORKS_ML_NN_COMMON_UTILS_H |
| |
| #include "HalInterfaces.h" |
| #include "NeuralNetworks.h" |
| #include "ValidateHal.h" |
| |
| #include <android-base/logging.h> |
| #include <optional> |
| #include <set> |
| #include <vector> |
| |
| namespace android { |
| namespace nn { |
| |
| // The number of data types (OperandCode) defined in NeuralNetworks.h. |
| const int kNumberOfDataTypes = 14; |
| |
| // The number of operation types (OperationCode) defined in NeuralNetworks.h. |
| const int kNumberOfOperationTypes = 95; |
| |
| // The number of execution preferences defined in NeuralNetworks.h. |
| const int kNumberOfPreferences = 3; |
| |
| // The number of data types (OperandCode) defined in NeuralNetworksOEM.h. |
| const int kNumberOfDataTypesOEM = 2; |
| |
| // The number of operation types (OperationCode) defined in NeuralNetworksOEM.h. |
| const int kNumberOfOperationTypesOEM = 1; |
| |
| // The lowest number assigned to any OEM Code in NeuralNetworksOEM.h. |
| const int kOEMCodeBase = 10000; |
| |
| /* IMPORTANT: if you change the following list, don't |
| * forget to update the corresponding 'tags' table in |
| * the initVlogMask() function implemented in Utils.cpp. |
| */ |
| enum VLogFlags { |
| MODEL = 0, |
| COMPILATION, |
| EXECUTION, |
| CPUEXE, |
| MANAGER, |
| DRIVER |
| }; |
| |
| #define VLOG_IS_ON(TAG) \ |
| ((vLogMask & (1 << (TAG))) != 0) |
| |
| #define VLOG(TAG) \ |
| if (LIKELY(!VLOG_IS_ON(TAG))) \ |
| ; \ |
| else \ |
| LOG(INFO) |
| |
| extern int vLogMask; |
| void initVLogMask(); |
| |
| #ifdef NN_DEBUGGABLE |
| #define SHOW_IF_DEBUG(msg) msg |
| #else |
| #define SHOW_IF_DEBUG(msg) "" |
| #endif |
| |
| // DEPRECATED(b/118737105). Use CHECK. |
| #define nnAssert(v) CHECK(v) |
| |
| #define NN_RETURN_IF_ERROR(expr) \ |
| do { \ |
| int _errorCode = (expr); \ |
| if (_errorCode != ANEURALNETWORKS_NO_ERROR) { \ |
| return _errorCode; \ |
| } \ |
| } while (0) |
| |
| // The NN_RET_CHECK family of macros defined below is similar to the CHECK family defined in |
| // system/core/base/include/android-base/logging.h |
| // |
| // The difference is that NN_RET_CHECK macros use LOG(ERROR) instead of LOG(FATAL) |
| // and return false instead of aborting. |
| |
| // Logs an error and returns false. Append context using << after. For example: |
| // |
| // NN_RET_CHECK_FAIL() << "Something went wrong"; |
| // |
| // The containing function must return a bool. |
| #define NN_RET_CHECK_FAIL() \ |
| return ::android::nn::FalseyErrorStream() \ |
| << "NN_RET_CHECK failed (" << __FILE__ << ":" << __LINE__ << "): " |
| |
| // Logs an error and returns false if condition is false. Extra logging can be appended using << |
| // after. For example: |
| // |
| // NN_RET_CHECK(false) << "Something went wrong"; |
| // |
| // The containing function must return a bool. |
| #define NN_RET_CHECK(condition) \ |
| while (UNLIKELY(!(condition))) NN_RET_CHECK_FAIL() << #condition << " " |
| |
| // Helper for NN_CHECK_xx(x, y) macros. |
| #define NN_RET_CHECK_OP(LHS, RHS, OP) \ |
| for (auto _values = ::android::base::MakeEagerEvaluator(LHS, RHS); \ |
| UNLIKELY(!(_values.lhs OP _values.rhs)); \ |
| /* empty */) \ |
| NN_RET_CHECK_FAIL() << #LHS << " " << #OP << " " << #RHS << " (" << #LHS << " = " \ |
| << _values.lhs << ", " << #RHS << " = " << _values.rhs << ") " |
| |
| // Logs an error and returns false if a condition between x and y does not hold. Extra logging can |
| // be appended using << after. For example: |
| // |
| // NN_RET_CHECK_EQ(a, b) << "Something went wrong"; |
| // |
| // The values must implement the appropriate comparison operator as well as |
| // `operator<<(std::ostream&, ...)`. |
| // The containing function must return a bool. |
| #define NN_RET_CHECK_EQ(x, y) NN_RET_CHECK_OP(x, y, ==) |
| #define NN_RET_CHECK_NE(x, y) NN_RET_CHECK_OP(x, y, !=) |
| #define NN_RET_CHECK_LE(x, y) NN_RET_CHECK_OP(x, y, <=) |
| #define NN_RET_CHECK_LT(x, y) NN_RET_CHECK_OP(x, y, <) |
| #define NN_RET_CHECK_GE(x, y) NN_RET_CHECK_OP(x, y, >=) |
| #define NN_RET_CHECK_GT(x, y) NN_RET_CHECK_OP(x, y, >) |
| |
| // A wrapper around LOG(ERROR) that can be implicitly converted to bool (always evaluates to false). |
| // Used to implement stream logging in NN_RET_CHECK. |
| class FalseyErrorStream { |
| DISALLOW_COPY_AND_ASSIGN(FalseyErrorStream); |
| |
| public: |
| FalseyErrorStream() {} |
| |
| template <typename T> |
| FalseyErrorStream& operator<<(const T& value) { |
| mBuffer << value; |
| return *this; |
| } |
| |
| ~FalseyErrorStream() { LOG(ERROR) << mBuffer.str(); } |
| |
| operator bool() const { return false; } |
| |
| private: |
| std::ostringstream mBuffer; |
| }; |
| |
| // Return a vector with one entry for each non extension OperandType, set to the |
| // specified PerformanceInfo value. The vector will be sorted by OperandType. |
| hidl_vec<Capabilities::OperandPerformance> nonExtensionOperandPerformance(PerformanceInfo perf); |
| |
| // Update the vector entry corresponding to the specified OperandType with the |
| // specified PerformanceInfo value. The vector must already have an entry for |
| // that OperandType, and must be sorted by OperandType. |
| void update(hidl_vec<Capabilities::OperandPerformance>* operandPerformance, OperandType type, |
| PerformanceInfo perf); |
| |
| // Look for a vector entry corresponding to the specified OperandType. If |
| // found, return the associated PerformanceInfo. If not, return a pessimistic |
| // PerformanceInfo (FLT_MAX). The vector must be sorted by OperandType. |
| PerformanceInfo lookup(const hidl_vec<Capabilities::OperandPerformance>& operandPerformance, |
| OperandType type); |
| |
| // Returns true if an operand type is an extension type. |
| bool isExtensionOperandType(OperandType type); |
| |
| // Returns true if an operation type is an extension type. |
| bool isExtensionOperationType(OperationType type); |
| |
| // Returns the amount of space needed to store a value of the specified |
| // dimensions and type. For a tensor with unspecified rank or at least one |
| // unspecified dimension, returns zero. |
| // |
| // Aborts if the specified type is an extension type. |
| // |
| // See also TypeManager::getSizeOfData(OperandType, const std::vector<uint32_t>&). |
| uint32_t nonExtensionOperandSizeOfData(OperandType type, const std::vector<uint32_t>& dimensions); |
| |
| // Returns the amount of space needed to store a value of the dimensions and |
| // type of this operand. For a tensor with unspecified rank or at least one |
| // unspecified dimension, returns zero. |
| // |
| // Aborts if the specified type is an extension type. |
| // |
| // See also TypeManager::getSizeOfData(const Operand&). |
| inline uint32_t nonExtensionOperandSizeOfData(const Operand& operand) { |
| return nonExtensionOperandSizeOfData(operand.type, operand.dimensions); |
| } |
| |
| // Returns true if a non-extension operand type is a scalar type. |
| // |
| // Aborts if the specified type is an extension type. |
| // |
| // See also TypeManager::isTensorType(OperandType). |
| bool nonExtensionOperandTypeIsScalar(int type); |
| |
| // Returns the name of the operation type in ASCII. |
| std::string getOperationName(OperationType opCode); |
| |
| // Returns the name of the operand type in ASCII. |
| std::string getOperandTypeName(OperandType type); |
| |
| // Whether an operand of tensor type has unspecified dimensions. |
| // |
| // Undefined behavior if the operand type is a scalar type. |
| bool tensorHasUnspecifiedDimensions(int type, const uint32_t* dim, uint32_t dimCount); |
| bool tensorHasUnspecifiedDimensions(const Operand& operand); |
| bool tensorHasUnspecifiedDimensions(const ANeuralNetworksOperandType* type); |
| |
| // Memory is unmapped. |
| // Memory is reference counted by hidl_memory instances, and is deallocated |
| // once there are no more references. |
| hidl_memory allocateSharedMemory(int64_t size); |
| |
| // Returns the number of padding bytes needed to align data of the |
| // specified length. It aligns object of length: |
| // 2, 3 on a 2 byte boundary, |
| // 4+ on a 4 byte boundary. |
| // We may want to have different alignments for tensors. |
| // TODO: This is arbitrary, more a proof of concept. We need |
| // to determine what this should be. |
| uint32_t alignBytesNeeded(uint32_t index, size_t length); |
| |
| // Does a detailed LOG(INFO) of the model |
| void logModelToInfo(const V1_0::Model& model); |
| void logModelToInfo(const V1_1::Model& model); |
| void logModelToInfo(const V1_2::Model& model); |
| |
| inline std::string toString(uint32_t obj) { |
| return std::to_string(obj); |
| } |
| |
| template <typename Type> |
| std::string toString(const std::vector<Type>& range) { |
| std::string os = "["; |
| for (size_t i = 0; i < range.size(); ++i) { |
| os += (i == 0 ? "" : ", ") + toString(range[i]); |
| } |
| return os += "]"; |
| } |
| |
| inline std::string toString(HalVersion halVersion) { |
| switch (halVersion) { |
| case HalVersion::UNKNOWN: |
| return "UNKNOWN HAL version"; |
| case HalVersion::V1_0: |
| return "HAL version 1.0"; |
| case HalVersion::V1_1: |
| return "HAL version 1.1"; |
| case HalVersion::V1_2: |
| return "HAL version 1.2"; |
| } |
| } |
| |
| inline bool validCode(uint32_t codeCount, uint32_t codeCountOEM, uint32_t code) { |
| return (code < codeCount) || (code >= kOEMCodeBase && (code - kOEMCodeBase) < codeCountOEM); |
| } |
| |
| bool validateOperandSymmPerChannelQuantParams( |
| const Operand& halOperand, const ANeuralNetworksSymmPerChannelQuantParams& channelQuant, |
| const char* tag); |
| |
| // Validates an operand type. |
| // |
| // extensionOperandTypeInfo must be nullptr iff the type is not an extension type. |
| // |
| // If allowPartial is true, the dimensions may be underspecified. |
| int validateOperandType(const ANeuralNetworksOperandType& type, |
| const Extension::OperandTypeInformation* const extensionOperandTypeInfo, |
| const char* tag, bool allowPartial); |
| int validateOperandList(uint32_t count, const uint32_t* list, uint32_t operandCount, |
| const char* tag); |
| |
| // Returns ANEURALNETWORKS_NO_ERROR if the corresponding operation is defined and can handle the |
| // provided operand types in the given HAL version, otherwise returns ANEURALNETWORKS_BAD_DATA. |
| int validateOperation(ANeuralNetworksOperationType opType, uint32_t inputCount, |
| const uint32_t* inputIndexes, uint32_t outputCount, |
| const uint32_t* outputIndexes, const std::vector<Operand>& operands, |
| HalVersion halVersion); |
| |
| inline size_t getSizeFromInts(int lower, int higher) { |
| return (uint32_t)(lower) + ((uint64_t)(uint32_t)(higher) << 32); |
| } |
| |
| // Convert ANEURALNETWORKS_* result code to ErrorStatus. |
| // Not guaranteed to be a 1-to-1 mapping. |
| ErrorStatus convertResultCodeToErrorStatus(int resultCode); |
| |
| // Convert ErrorStatus to ANEURALNETWORKS_* result code. |
| // Not guaranteed to be a 1-to-1 mapping. |
| int convertErrorStatusToResultCode(ErrorStatus status); |
| |
| // Versioning |
| |
| bool compliantWithV1_0(const V1_0::Capabilities& capabilities); |
| bool compliantWithV1_0(const V1_1::Capabilities& capabilities); |
| bool compliantWithV1_0(const V1_2::Capabilities& capabilities); |
| bool compliantWithV1_1(const V1_0::Capabilities& capabilities); |
| bool compliantWithV1_1(const V1_1::Capabilities& capabilities); |
| bool compliantWithV1_1(const V1_2::Capabilities& capabilities); |
| bool compliantWithV1_2(const V1_0::Capabilities& capabilities); |
| bool compliantWithV1_2(const V1_1::Capabilities& capabilities); |
| bool compliantWithV1_2(const V1_2::Capabilities& capabilities); |
| |
| bool compliantWithV1_0(const V1_2::Operand& operand); |
| |
| // If noncompliantOperations != nullptr, then |
| // precondition: noncompliantOperations->empty() |
| // postcondition: *noncompliantOperations consists of the indices of the noncompliant |
| // operations; if the compliance check fails for some reason |
| // other than a noncompliant operation, |
| // *noncompliantOperations consists of the indices of all operations |
| bool compliantWithV1_0(const V1_0::Model& model); |
| bool compliantWithV1_0(const V1_1::Model& model); |
| bool compliantWithV1_0(const V1_2::Model& model, |
| std::set<uint32_t>* noncompliantOperations = nullptr); |
| bool compliantWithV1_1(const V1_0::Model& model); |
| bool compliantWithV1_1(const V1_1::Model& model); |
| bool compliantWithV1_1(const V1_2::Model& model, |
| std::set<uint32_t>* noncompliantOperations = nullptr); |
| |
| V1_0::Capabilities convertToV1_0(const V1_0::Capabilities& capabilities); |
| V1_0::Capabilities convertToV1_0(const V1_1::Capabilities& capabilities); |
| V1_0::Capabilities convertToV1_0(const V1_2::Capabilities& capabilities); |
| V1_1::Capabilities convertToV1_1(const V1_0::Capabilities& capabilities); |
| V1_1::Capabilities convertToV1_1(const V1_1::Capabilities& capabilities); |
| V1_1::Capabilities convertToV1_1(const V1_2::Capabilities& capabilities); |
| V1_2::Capabilities convertToV1_2(const V1_0::Capabilities& capabilities); |
| V1_2::Capabilities convertToV1_2(const V1_1::Capabilities& capabilities); |
| V1_2::Capabilities convertToV1_2(const V1_2::Capabilities& capabilities); |
| |
| V1_0::Model convertToV1_0(const V1_0::Model& model); |
| V1_0::Model convertToV1_0(const V1_1::Model& model); |
| V1_0::Model convertToV1_0(const V1_2::Model& model); |
| V1_1::Model convertToV1_1(const V1_0::Model& model); |
| V1_1::Model convertToV1_1(const V1_1::Model& model); |
| V1_1::Model convertToV1_1(const V1_2::Model& model); |
| V1_2::Model convertToV1_2(const V1_0::Model& model); |
| V1_2::Model convertToV1_2(const V1_1::Model& model); |
| V1_2::Model convertToV1_2(const V1_2::Model& model); |
| |
| // The IModelSlicer abstract class provides methods to create from an original |
| // model a "slice" of that model consisting of the subset of operations that is |
| // compliant with a particular HAL version, and a mechanism for mapping |
| // operations from the slice back to operations of the original model. The |
| // slice is intended to be passed to getSupportedOperations*(), with the mapping |
| // used to translate the results of that call from the slice's operations to the |
| // original model's operations. The slice has no other purpose (for example, it |
| // is not guaranteed to have the same topology as a subgraph of the original |
| // model). |
| // |
| // Note that the original model is not part of the ModelSlicer specification -- |
| // an instance of a class derived from ModelSlicer is responsible for knowing |
| // the original model. getSlice*() methods may be called multiple times on a |
| // given instance; the intention is that the instance cache slices internally. |
| // |
| // The meaning of the return value of the getSlice*() methods is explained by |
| // the following example: |
| // |
| // IModelSlicer* slicer = ...; |
| // auto ret = slicer->getSliceV1_0(); // getSliceV1_1() is similar |
| // if (ret.has_value()) { |
| // const V1_0::Model model = ret->first; // the slice |
| // auto mapper = ret->second; |
| // // mapper is a functor that takes an operation index in the |
| // // slice and returns the corresponding operation index in the |
| // // original model. The functor must remain valid for the lifetime |
| // // of *slicer. |
| // } else { |
| // // Could not obtain a slice. For example, perhaps none of the |
| // // original model's operations are compliant with V1_0. |
| // } |
| // |
| class IModelSlicer { |
| public: |
| virtual std::optional<std::pair<V1_0::Model, std::function<uint32_t(uint32_t)>>> |
| getSliceV1_0() = 0; |
| virtual std::optional<std::pair<V1_1::Model, std::function<uint32_t(uint32_t)>>> |
| getSliceV1_1() = 0; |
| |
| virtual ~IModelSlicer() = default; |
| }; |
| |
| V1_0::OperationType uncheckedConvertToV1_0(V1_2::OperationType type); |
| V1_1::OperationType uncheckedConvertToV1_1(V1_2::OperationType type); |
| |
| V1_0::Operand convertToV1_0(const V1_2::Operand& operand); |
| |
| V1_2::Operand convertToV1_2(const V1_0::Operand& operand); |
| V1_2::Operand convertToV1_2(const V1_2::Operand& operand); |
| |
| hidl_vec<V1_2::Operand> convertToV1_2(const hidl_vec<V1_0::Operand>& operands); |
| hidl_vec<V1_2::Operand> convertToV1_2(const hidl_vec<V1_2::Operand>& operands); |
| |
| #ifdef NN_DEBUGGABLE |
| uint32_t getProp(const char* str, uint32_t defaultValue = 0); |
| #endif // NN_DEBUGGABLE |
| |
| } // namespace nn |
| } // namespace android |
| |
| #endif // FRAMEWORKS_ML_NN_COMMON_UTILS_H |