blob: e16d7d49e139a786817160c418d956a2565b6b00 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Operations.h"
#include "CpuOperationUtils.h"
#include "tensorflow/contrib/lite/kernels/internal/optimized/legacy_optimized_ops.h"
#include "tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h"
#include "Tracing.h"
namespace android {
namespace nn {
template <typename T>
bool reluFloat(const T* inputData, const Shape& inputShape, T* outputData, const Shape& outputShape,
float reluMin, float reluMax) {
NNTRACE_COMP("reluX");
int numElements = getNumberOfElements(inputShape);
for (int i = 0; i < numElements; i++, inputData++, outputData++) {
*outputData = static_cast<T>(
std::min(std::max(reluMin, static_cast<float>(*inputData)), reluMax));
}
return true;
}
template bool reluFloat<float>(const float* inputData, const Shape& inputShape, float* outputData,
const Shape& outputShape, float reluMin, float reluMax);
template bool reluFloat<_Float16>(const _Float16* inputData, const Shape& inputShape,
_Float16* outputData, const Shape& outputShape, float reluMin,
float reluMax);
template <typename T>
bool relu1Float(const T* inputData, const Shape& inputShape, T* outputData,
const Shape& outputShape) {
return reluFloat(inputData, inputShape, outputData, outputShape, -1.f, 1.f);
}
template bool relu1Float<float>(const float* inputData, const Shape& inputShape, float* outputData,
const Shape& outputShape);
template bool relu1Float<_Float16>(const _Float16* inputData, const Shape& inputShape,
_Float16* outputData, const Shape& outputShape);
template <typename T>
bool relu6Float(const T* inputData, const Shape& inputShape, T* outputData,
const Shape& outputShape) {
return reluFloat(inputData, inputShape, outputData, outputShape, 0.f, 6.f);
}
template bool relu6Float<float>(const float* inputData, const Shape& inputShape, float* outputData,
const Shape& outputShape);
template bool relu6Float<_Float16>(const _Float16* inputData, const Shape& inputShape,
_Float16* outputData, const Shape& outputShape);
bool tanhFloat16(const _Float16* inputData, const Shape& inputShape, _Float16* outputData,
const Shape& outputShape) {
NNTRACE_COMP("tanhFloat16");
int numElements = getNumberOfElements(inputShape);
for (int i = 0; i < numElements; i++, inputData++, outputData++) {
*outputData = static_cast<_Float16>(std::tanh(static_cast<float>(*inputData)));
}
return true;
}
bool tanhFloat32(const float* inputData, const Shape& inputShape,
float* outputData, const Shape& outputShape) {
NNTRACE_COMP("tanhFloat32");
int numElements = getNumberOfElements(inputShape);
for (int i=0; i<numElements; i++, inputData++, outputData++) {
*outputData = std::tanh(*inputData);
}
return true;
}
template <typename T>
bool logisticFloat(const T* inputData, const Shape& inputShape, T* outputData,
const Shape& outputShape) {
NNTRACE_COMP("logisticFloat");
int numElements = getNumberOfElements(inputShape);
for (int i = 0; i < numElements; i++, inputData++, outputData++) {
*outputData = static_cast<T>(1.f / (1.f + std::exp(static_cast<float>(-*inputData))));
}
return true;
}
template bool logisticFloat<float>(const float* inputData, const Shape& inputShape,
float* outputData, const Shape& outputShape);
template bool logisticFloat<_Float16>(const _Float16* inputData, const Shape& inputShape,
_Float16* outputData, const Shape& outputShape);
inline bool softmaxSlowFloat32(const float* inputData, const Shape& inputShape, const float beta,
int32_t axis, float* outputData, const Shape& outputShape) {
NNTRACE_TRANS("softmaxFloatSlow32");
const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis);
const uint32_t axisSize = getSizeOfDimension(inputShape, axis);
const uint32_t innerSize =
getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
for (uint32_t outer = 0; outer < outerSize; ++outer) {
const float* inputBeg = inputData + outer * axisSize * innerSize;
const float* inputEnd = inputBeg + axisSize * innerSize;
float* outputBeg = outputData + outer * axisSize * innerSize;
for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBeg, ++inputEnd, ++outputBeg) {
// Find max
float maxValue = -FLT_MAX;
for (const float* p = inputBeg; p < inputEnd; p += innerSize) {
maxValue = std::max(maxValue, *p);
}
// Compute sum
float sum = 0.0f;
for (const float* p = inputBeg; p < inputEnd; p += innerSize) {
sum += std::exp((*p - maxValue) * beta);
}
// Compute result
float* pOut = outputBeg;
for (const float* p = inputBeg; p < inputEnd; p += innerSize, pOut += innerSize) {
*pOut = std::exp((*p - maxValue) * beta) / sum;
}
}
}
return true;
}
bool softmaxFloat16(const _Float16* inputData, const Shape& inputShape, const float beta,
int32_t axis, _Float16* outputData, const Shape& outputShape) {
NNTRACE_TRANS("softmaxFloat16");
std::vector<float> inputData_float32(getNumberOfElements(inputShape));
convertFloat16ToFloat32(inputData, &inputData_float32);
std::vector<float> outputData_float32(getNumberOfElements(outputShape));
softmaxFloat32(inputData_float32.data(), inputShape, beta, axis, outputData_float32.data(),
outputShape);
convertFloat32ToFloat16(outputData_float32, outputData);
return true;
}
bool softmaxFloat32(const float* inputData, const Shape& inputShape, const float beta, int32_t axis,
float* outputData, const Shape& outputShape) {
int32_t ndim = getNumberOfDimensions(inputShape);
NN_CHECK(handleNegativeAxis(inputShape, &axis));
// TFLite optimized implementation only supports computation along the last axis
if (axis == ndim - 1) {
NNTRACE_COMP("optimized_ops::Softmax::float");
tflite::SoftmaxParams param = {.beta = beta};
tflite::optimized_ops::Softmax(param, convertShapeToTflshape(inputShape), inputData,
convertShapeToTflshape(outputShape), outputData);
return true;
} else {
return softmaxSlowFloat32(inputData, inputShape, beta, axis, outputData, outputShape);
}
}
#define ANDROID_NN_RELUX_QUANT8(activation) \
int numElements = getNumberOfElements(inputShape); \
int32_t output_activation_min = 0; \
int32_t output_activation_max = 0; \
\
CalculateActivationRangeUint8(activation, inputShape, \
&output_activation_min, \
&output_activation_max); \
\
for (int i=0; i<numElements; i++, inputData++, outputData++) { \
*outputData = std::min((uint8_t)output_activation_max, \
std::max((uint8_t)output_activation_min, *inputData)); \
}
bool reluQuant8(const uint8_t* inputData, const Shape& inputShape,
uint8_t* outputData, const Shape& outputShape) {
NNTRACE_COMP("reluQuant8");
ANDROID_NN_RELUX_QUANT8(kActivationRelu)
return true;
}
bool relu1Quant8(const uint8_t* inputData, const Shape& inputShape,
uint8_t* outputData, const Shape& outputShape) {
NNTRACE_COMP("relu1Quant8");
ANDROID_NN_RELUX_QUANT8(kActivationRelu1)
return true;
}
bool relu6Quant8(const uint8_t* inputData, const Shape& inputShape,
uint8_t* outputData, const Shape& outputShape) {
NNTRACE_COMP("relu6Quant8");
ANDROID_NN_RELUX_QUANT8(kActivationRelu6)
return true;
}
#undef ANDROID_NN_RELUX_QUANT8
bool tanhQuant8(const uint8_t* inputData, const Shape& inputShape, uint8_t* outputData,
const Shape& outputShape) {
NNTRACE_TRANS("tanhQuant8");
if (outputShape.offset != 128 || outputShape.scale != 1.f / 128) {
LOG(ERROR) << "incorrect scale or offset for TANH output";
return false;
}
int numElements = getNumberOfElements(inputShape);
static constexpr int kInputIntegerBits = 4;
const double input_real_multiplier =
inputShape.scale * static_cast<double>(1 << (31 - kInputIntegerBits));
int32_t input_multiplier = 0;
int32_t input_left_shift = 0;
if (!QuantizeMultiplierGreaterThanOne(input_real_multiplier, &input_multiplier,
&input_left_shift)) {
return false;
}
int32_t input_range_radius = CalculateInputRadius(kInputIntegerBits, input_left_shift);
NNTRACE_COMP_SWITCH("optimized_ops::Tanh");
tflite::optimized_ops::Tanh(inputData, convertShapeToTflshape(inputShape), inputShape.offset,
input_range_radius, input_multiplier, input_left_shift, outputData,
convertShapeToTflshape(outputShape));
return true;
}
bool logisticQuant8(const uint8_t* inputData, const Shape& inputShape,
uint8_t* outputData, const Shape& outputShape) {
NNTRACE_TRANS("logisticQuant8");
if (outputShape.offset != 0 || outputShape.scale != 1.f / 256) {
LOG(ERROR) << "incorrect scale / offset for output";
return false;
}
int numElements = getNumberOfElements(inputShape);
static constexpr int kInputIntegerBits = 4;
const double input_real_multiplier =
inputShape.scale *
static_cast<double>(1 << (31 - kInputIntegerBits));
int32_t input_multiplier = 0;
int32_t input_left_shift = 0;
if (!QuantizeMultiplierGreaterThanOne(input_real_multiplier,
&input_multiplier,
&input_left_shift)) {
return false;
}
int32_t input_range_radius =
CalculateInputRadius(kInputIntegerBits, input_left_shift);
NNTRACE_COMP_SWITCH("optimized_ops::Logistic");
tflite::optimized_ops::Logistic(
inputData, convertShapeToTflshape(inputShape),
inputShape.offset, input_range_radius,
input_multiplier, input_left_shift,
outputData, convertShapeToTflshape(outputShape));
return true;
}
bool softmaxQuant8Impl(const uint8_t* inputData, const Shape& inputShape, const float beta,
int32_t axis, int32_t inputMultiplier, int32_t inputLeftShift, float diffMin,
uint8_t* outputData, const Shape& outputShape) {
NNTRACE_TRANS("softmaxQuant8");
// The representation chosen for the input to the exp() function is Q5.26.
// We need to leave extra space since values that we skip might be as large as
// -32 before multiplying by input_beta_multiplier, and therefore as large as
// -16 afterwards. Note that exp(-8) is definitely not insignificant to
// accumulation, but exp(-16) definitely is.
static const int32_t kScaledDiffIntegerBits = 5;
static const int kAccumulationIntegerBits = 12;
using FixedPointScaledDiff = gemmlowp::FixedPoint<int32_t, kScaledDiffIntegerBits>;
using FixedPointAccum = gemmlowp::FixedPoint<int32_t, kAccumulationIntegerBits>;
using FixedPoint0 = gemmlowp::FixedPoint<int32_t, 0>;
const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis);
const uint32_t axisSize = getSizeOfDimension(inputShape, axis);
const uint32_t innerSize =
getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
for (uint32_t outer = 0; outer < outerSize; ++outer) {
const uint8_t* inputBeg = inputData + outer * axisSize * innerSize;
const uint8_t* inputEnd = inputBeg + axisSize * innerSize;
uint8_t* outputBeg = outputData + outer * axisSize * innerSize;
for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBeg, ++inputEnd, ++outputBeg) {
// Find max
uint8_t maxValue = 0;
for (const uint8_t* p = inputBeg; p < inputEnd; p += innerSize) {
maxValue = std::max(maxValue, *p);
}
// Compute sum
FixedPointAccum sum_of_exps = FixedPointAccum::Zero();
for (const uint8_t* p = inputBeg; p < inputEnd; p += innerSize) {
int32_t input_diff = static_cast<int32_t>(*p) - maxValue;
if (input_diff >= diffMin) {
const int32_t input_diff_rescaled =
tflite::MultiplyByQuantizedMultiplierGreaterThanOne(
input_diff, inputMultiplier, inputLeftShift);
const auto scaled_diff_f8 = FixedPointScaledDiff::FromRaw(input_diff_rescaled);
sum_of_exps = sum_of_exps + gemmlowp::Rescale<kAccumulationIntegerBits>(
exp_on_negative_values(scaled_diff_f8));
}
}
uint32_t fixed_sum_of_exps = static_cast<uint32_t>(sum_of_exps.raw());
int32_t headroom_plus_one = tflite::CountLeadingZeros(fixed_sum_of_exps);
// This is the number of bits to the left of the binary point above 1.0.
// Consider fixed_sum_of_exps=1.25. In that case shifted_scale=0.8 and
// no later adjustment will be needed.
int32_t num_bits_over_unit = kAccumulationIntegerBits - headroom_plus_one;
int32_t shifted_sum_minus_one = static_cast<int32_t>(
(fixed_sum_of_exps << headroom_plus_one) - (static_cast<uint32_t>(1) << 31));
FixedPoint0 shifted_scale = gemmlowp::one_over_one_plus_x_for_x_in_0_1(
FixedPoint0::FromRaw(shifted_sum_minus_one));
// Compute result
uint8_t* pOut = outputBeg;
for (const uint8_t* p = inputBeg; p < inputEnd; p += innerSize, pOut += innerSize) {
int32_t input_diff = static_cast<int32_t>(*p) - maxValue;
if (input_diff >= diffMin) {
const int32_t input_diff_rescaled =
tflite::MultiplyByQuantizedMultiplierGreaterThanOne(
input_diff, inputMultiplier, inputLeftShift);
const auto scaled_diff_f8 = FixedPointScaledDiff::FromRaw(input_diff_rescaled);
FixedPoint0 exp_in_0 = exp_on_negative_values(scaled_diff_f8);
int32_t unsat_output = gemmlowp::RoundingDivideByPOT(
(shifted_scale * exp_in_0).raw(), num_bits_over_unit + 31 - 8);
*pOut = static_cast<uint8_t>(
std::max(std::min(unsat_output, static_cast<int32_t>(255)), 0));
} else {
*pOut = 0;
}
}
}
}
return true;
}
bool softmaxQuant8(const uint8_t* inputData, const Shape& inputShape, const float beta,
int32_t axis, uint8_t* outputData, const Shape& outputShape) {
int32_t ndim = getNumberOfDimensions(inputShape);
NN_CHECK(handleNegativeAxis(inputShape, &axis));
if (outputShape.offset != 0 || outputShape.scale != 1.f / 256) {
LOG(ERROR) << "incorrect scale / offset for output";
return false;
}
static const int32_t kScaledDiffIntegerBits = 5;
const double input_beta_real_multiplier =
std::min(1.0 * beta * inputShape.scale * (1 << (31 - kScaledDiffIntegerBits)),
(1LL << 31) - 1.0);
int32_t inputMultiplier = 0, inputLeftShift = 0;
if (!QuantizeMultiplierGreaterThanOne(input_beta_real_multiplier, &inputMultiplier,
&inputLeftShift)) {
return false;
}
int32_t diffMin = -CalculateInputRadius(kScaledDiffIntegerBits, inputLeftShift);
// TFLite optimized implementation only supports computation along the last axis
if (axis == ndim - 1) {
NNTRACE_COMP("optimized_ops::Softmax::uint8");
tflite::SoftmaxParams param = {.beta = beta,
.input_multiplier = inputMultiplier,
.input_left_shift = inputLeftShift,
.diff_min = diffMin};
tflite::optimized_ops::Softmax(param, convertShapeToTflshape(inputShape), inputData,
convertShapeToTflshape(outputShape), outputData);
return true;
} else {
return softmaxQuant8Impl(inputData, inputShape, beta, axis, inputMultiplier, inputLeftShift,
diffMin, outputData, outputShape);
}
}
} // namespace nn
} // namespace android