blob: d6fecbd10af98c64689588ff39ce0016838a6f67 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "CpuOperationUtils.h"
#include "Operations.h"
#include "tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h"
#include "tensorflow/contrib/lite/kernels/internal/reference/legacy_reference_ops.h"
#include "Tracing.h"
namespace android {
namespace nn {
template <typename T>
bool concatenation(const std::vector<const T*>& inputDataPtrs,
const std::vector<Shape>& inputShapes, int32_t axis, T* outputData,
const Shape& outputShape) {
NNTRACE_TRANS("concatenation");
int num_inputs = inputShapes.size();
std::vector<tflite::Dims<4>*> inputDimsPtr(num_inputs);
std::vector<tflite::Dims<4> > inputDims(num_inputs);
for (int i = 0; i < num_inputs; i++) {
inputDims[i] = convertShapeToDims(inputShapes[i]);
inputDimsPtr[i] = &inputDims[i];
}
NNTRACE_COMP_SWITCH("optimized_ops::Concatenation");
tflite::optimized_ops::Concatenation<tflite::FusedActivationFunctionType::kNone, T>(
getNumberOfDimensions(outputShape) - axis - 1, inputDataPtrs.data(),
inputDimsPtr.data(), num_inputs, outputData, convertShapeToDims(outputShape));
return true;
}
template bool concatenation<float>(const std::vector<const float*>& inputDataPtrs,
const std::vector<Shape>& inputShapes, int32_t axis,
float* outputData, const Shape& outputShape);
template bool concatenation<_Float16>(const std::vector<const _Float16*>& inputDataPtrs,
const std::vector<Shape>& inputShapes, int32_t axis,
_Float16* outputData, const Shape& outputShape);
template <>
bool concatenation<uint8_t>(const std::vector<const uint8_t*>& inputDataPtrs,
const std::vector<Shape>& inputShapes, int32_t axis,
uint8_t* outputData, const Shape& outputShape) {
NNTRACE_TRANS("concatenationQuant8");
int num_inputs = inputShapes.size();
std::vector<float> inputScales(num_inputs);
std::vector<int32> inputOffsets(num_inputs);
std::vector<tflite::Dims<4>*> inputDimsPtr(num_inputs);
std::vector<tflite::Dims<4> > inputDims(num_inputs);
for (int i = 0; i < num_inputs; i++) {
inputScales[i] = inputShapes[i].scale;
inputOffsets[i] = inputShapes[i].offset;
inputDims[i] = convertShapeToDims(inputShapes[i]);
inputDimsPtr[i] = &inputDims[i];
}
NNTRACE_COMP_SWITCH("reference_ops::Concatenation");
tflite::reference_ops::Concatenation(
getNumberOfDimensions(outputShape) - axis - 1, inputDataPtrs.data(),
inputDimsPtr.data(), inputOffsets.data(), inputScales.data(), num_inputs, outputData,
convertShapeToDims(outputShape), outputShape.offset, outputShape.scale);
return true;
}
} // namespace nn
} // namespace android