blob: c0676b5d77fc5ec879696e1c5135743230ea7176 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "CpuOperationUtils.h"
#include "Operations.h"
#include <cfloat>
#include <cmath>
#include "Tracing.h"
#include "tensorflow/contrib/lite/kernels/internal/common.h"
namespace android {
namespace nn {
// If possible we will use this static buffer for the tensor.
static constexpr size_t kStaticBufferSize = 1605632;
static char static_scratch_buffer[kStaticBufferSize];
// executionMutex is used to protect concurrent access of the static_scratch_buffer.
// std::mutex is safe for pthreads on Android.
static std::mutex executionMutex;
#define ANDROID_NN_TRANSPOSE_CONV_PARAMETERS \
uint32_t numBatches = getSizeOfDimension(inputShape, 0); \
uint32_t inputHeight = getSizeOfDimension(inputShape, 1); \
uint32_t inputWidth = getSizeOfDimension(inputShape, 2); \
uint32_t inputDepth = getSizeOfDimension(inputShape, 3); \
uint32_t filterHeight = getSizeOfDimension(filterShape, 1); \
uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \
uint32_t outputHeight = getSizeOfDimension(outputShape, 1); \
uint32_t outputWidth = getSizeOfDimension(outputShape, 2); \
uint32_t outputDepth = getSizeOfDimension(outputShape, 3);
bool transposeConvFloat32(const float* inputData, const Shape& inputShape, const float* filterData,
const Shape& filterShape, const float* biasData, const Shape& biasShape,
int32_t padding_left, int32_t padding_right, int32_t padding_top,
int32_t padding_bottom, int32_t stride_width, int32_t stride_height,
int32_t activation, float* outputData, const Shape& outputShape) {
NNTRACE_TRANS("transposeConvFloat32");
ANDROID_NN_TRANSPOSE_CONV_PARAMETERS
float output_activation_min = 0.0f, output_activation_max = 0.0f;
CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max);
memset(outputData, 0, getNumberOfElements(outputShape) * sizeof(float));
const float* inputBase = inputData;
float* outputBase = outputData;
for (uint32_t b = 0; b < numBatches; b++) {
for (uint32_t h = 0; h < inputHeight; h++) {
for (uint32_t w = 0; w < inputWidth; w++) {
int32_t wOutputOrigin = static_cast<int32_t>(w) * stride_width - padding_left;
int32_t hOutputOrigin = static_cast<int32_t>(h) * stride_height - padding_top;
const float* filterBase = filterData;
for (uint32_t k = 0; k < outputDepth; k++) {
for (uint32_t i = 0; i < filterHeight; i++) {
for (uint32_t j = 0; j < filterWidth; j++, filterBase += inputDepth) {
int32_t hOutput = hOutputOrigin + static_cast<int32_t>(i);
int32_t wOutput = wOutputOrigin + static_cast<int32_t>(j);
if (hOutput >= 0 && hOutput < static_cast<int32_t>(outputHeight) &&
wOutput >= 0 && wOutput < static_cast<int32_t>(outputWidth)) {
for (uint32_t d = 0; d < inputDepth; d++) {
uint32_t outputIndex = hOutput * outputWidth * outputDepth +
wOutput * outputDepth + k;
outputBase[outputIndex] += inputBase[d] * filterBase[d];
}
}
}
}
}
inputBase += inputDepth;
}
}
outputBase += outputHeight * outputWidth * outputDepth;
}
const uint32_t outerSize = numBatches * outputHeight * outputWidth;
float* outPtr = outputData;
for (uint32_t i = 0; i < outerSize; i++) {
for (uint32_t d = 0; d < outputDepth; d++, outPtr++) {
*outPtr += biasData[d];
*outPtr = std::max(std::min(*outPtr, output_activation_max), output_activation_min);
}
}
return true;
}
bool transposeConvQuant8(const uint8_t* inputData, const Shape& inputShape,
const uint8_t* filterData, const Shape& filterShape,
const int32_t* biasData, const Shape& biasShape, int32_t padding_left,
int32_t padding_right, int32_t padding_top, int32_t padding_bottom,
int32_t stride_width, int32_t stride_height, int32_t activation,
uint8_t* outputData, const Shape& outputShape) {
NNTRACE_TRANS("transposeConvQuant8");
ANDROID_NN_TRANSPOSE_CONV_PARAMETERS
int32_t* tempBuffer = nullptr;
std::unique_ptr<int32_t[]> bufferGuard;
uint32_t tempBufferByteSize = getNumberOfElements(outputShape) * sizeof(int32_t);
if (tempBufferByteSize <= kStaticBufferSize) {
tempBuffer = reinterpret_cast<int32_t*>(static_scratch_buffer);
} else {
tempBuffer = new (std::nothrow) int32_t[tempBufferByteSize / sizeof(int32_t)];
if (tempBuffer == nullptr) {
LOG(ERROR) << "ConvTranspose size is too large, not enough memory";
return false;
}
bufferGuard.reset(tempBuffer);
}
int32_t inputOffset = -inputShape.offset;
int32_t filterOffset = -filterShape.offset;
int32_t outputOffset = outputShape.offset;
float realMultiplier = 0.0;
int32_t outputMultiplier = 0;
int32_t outputShift = 0;
if (!GetQuantizedConvolutionMultipler(inputShape, filterShape, biasShape, outputShape,
&realMultiplier) ||
!QuantizeMultiplierSmallerThanOne(realMultiplier, &outputMultiplier, &outputShift)) {
return false;
}
int32_t output_activation_min = 0, output_activation_max = 0;
CalculateActivationRangeUint8(activation, outputShape, &output_activation_min,
&output_activation_max);
// Prevent concurrent executions that may access the scratch buffer
std::unique_lock<std::mutex> lock(executionMutex);
memset(tempBuffer, 0, tempBufferByteSize);
const uint8_t* inputPtr = inputData;
int32_t* outputBase = tempBuffer;
for (uint32_t b = 0; b < numBatches; b++) {
for (uint32_t h = 0; h < inputHeight; h++) {
for (uint32_t w = 0; w < inputWidth; w++) {
for (uint32_t d = 0; d < inputDepth; d++) {
int32_t wOutputOrigin = static_cast<int32_t>(w) * stride_width - padding_left;
int32_t hOutputOrigin = static_cast<int32_t>(h) * stride_height - padding_top;
for (uint32_t i = 0; i < filterHeight; i++) {
for (uint32_t j = 0; j < filterWidth; j++) {
for (uint32_t k = 0; k < outputDepth; k++) {
int32_t hOutput = hOutputOrigin + static_cast<int32_t>(i);
int32_t wOutput = wOutputOrigin + static_cast<int32_t>(j);
if (hOutput >= 0 && hOutput < static_cast<int32_t>(outputHeight) &&
wOutput >= 0 && wOutput < static_cast<int32_t>(outputWidth)) {
uint32_t filterIndex =
k * filterHeight * filterWidth * inputDepth +
i * filterWidth * inputDepth + j * inputDepth + d;
uint32_t outputIndex = hOutput * outputWidth * outputDepth +
wOutput * outputDepth + k;
outputBase[outputIndex] +=
(static_cast<int32_t>(*inputPtr) + inputOffset) *
(static_cast<int32_t>(filterData[filterIndex]) +
filterOffset);
}
}
}
}
inputPtr++;
}
}
}
outputBase += outputHeight * outputWidth * outputDepth;
}
const uint32_t outerSize = numBatches * outputHeight * outputWidth;
int32_t* bufferPtr = tempBuffer;
uint8_t* outPtr = outputData;
for (uint32_t i = 0; i < outerSize; i++) {
for (uint32_t d = 0; d < outputDepth; d++, bufferPtr++, outPtr++) {
int32_t outVal = *bufferPtr + biasData[d];
outVal = tflite::MultiplyByQuantizedMultiplier(outVal, outputMultiplier, -outputShift);
outVal += outputOffset;
outVal = std::max(std::min(outVal, output_activation_max), output_activation_min);
*outPtr = static_cast<uint8_t>(outVal);
}
}
return true;
}
bool transposeConvFloat16(const _Float16* inputData, const Shape& inputShape,
const _Float16* filterData, const Shape& filterShape,
const _Float16* biasData, const Shape& biasShape, int32_t padding_left,
int32_t padding_right, int32_t padding_top, int32_t padding_bottom,
int32_t stride_width, int32_t stride_height, int32_t activation,
_Float16* outputData, const Shape& outputShape) {
NNTRACE_TRANS("transposeConvFloat16");
std::vector<float> inputData_float32(getNumberOfElements(inputShape));
std::vector<float> filterData_float32(getNumberOfElements(filterShape));
std::vector<float> biasData_float32(getNumberOfElements(biasShape));
std::vector<float> outputData_float32(getNumberOfElements(outputShape));
convertFloat16ToFloat32(inputData, &inputData_float32);
convertFloat16ToFloat32(filterData, &filterData_float32);
convertFloat16ToFloat32(biasData, &biasData_float32);
transposeConvFloat32(inputData_float32.data(), inputShape, filterData_float32.data(),
filterShape, biasData_float32.data(), biasShape, padding_left,
padding_right, padding_top, padding_bottom, stride_width, stride_height,
activation, outputData_float32.data(), outputShape);
convertFloat32ToFloat16(outputData_float32, outputData);
return true;
}
bool transposeConvQuant8PerChannel(const uint8_t* inputData, const Shape& inputShape,
const uint8_t* filterData, const Shape& filterShape,
const float* filterScales, const int32_t* biasData,
const Shape& biasShape, int32_t padding_left,
int32_t padding_right, int32_t padding_top,
int32_t padding_bottom, int32_t stride_width,
int32_t stride_height, int32_t activation, uint8_t* outputData,
const Shape& outputShape) {
NNTRACE_TRANS("transposeConvQuant8PerChannel");
ANDROID_NN_TRANSPOSE_CONV_PARAMETERS
int32_t* tempBuffer = nullptr;
std::unique_ptr<int32_t[]> bufferGuard;
uint32_t tempBufferByteSize = getNumberOfElements(outputShape) * sizeof(int32_t);
if (tempBufferByteSize <= kStaticBufferSize) {
tempBuffer = reinterpret_cast<int32_t*>(static_scratch_buffer);
} else {
tempBuffer = new (std::nothrow) int32_t[tempBufferByteSize / sizeof(int32_t)];
if (tempBuffer == nullptr) {
LOG(ERROR) << "ConvTranspose size is too large, not enough memory";
return false;
}
bufferGuard.reset(tempBuffer);
}
int32_t inputOffset = -inputShape.offset;
int32_t outputOffset = outputShape.offset;
std::vector<float> realMultiplier(outputDepth, 0.0);
std::vector<int32_t> outputMultiplier(outputDepth, 0);
std::vector<int32_t> outputShift(outputDepth, 0);
for (int i = 0; i < outputDepth; ++i) {
Shape filterChannelShape = filterShape;
filterChannelShape.scale = filterScales[i];
Shape biasChannelShape = biasShape;
biasChannelShape.scale = filterScales[i] * inputShape.scale;
if (!GetQuantizedConvolutionMultipler(inputShape, filterChannelShape, biasChannelShape,
outputShape, &realMultiplier[i]) ||
!QuantizeMultiplierSmallerThanOne(realMultiplier[i], &outputMultiplier[i],
&outputShift[i])) {
return false;
}
}
int32_t output_activation_min = 0, output_activation_max = 0;
CalculateActivationRangeUint8(activation, outputShape, &output_activation_min,
&output_activation_max);
// Prevent concurrent executions that may access the scratch buffer
std::unique_lock<std::mutex> lock(executionMutex);
memset(tempBuffer, 0, tempBufferByteSize);
const uint8_t* inputPtr = inputData;
int32_t* outputBase = tempBuffer;
for (uint32_t b = 0; b < numBatches; b++) {
for (uint32_t h = 0; h < inputHeight; h++) {
for (uint32_t w = 0; w < inputWidth; w++) {
for (uint32_t d = 0; d < inputDepth; d++) {
int32_t wOutputOrigin = static_cast<int32_t>(w) * stride_width - padding_left;
int32_t hOutputOrigin = static_cast<int32_t>(h) * stride_height - padding_top;
for (uint32_t i = 0; i < filterHeight; i++) {
for (uint32_t j = 0; j < filterWidth; j++) {
for (uint32_t k = 0; k < outputDepth; k++) {
int32_t hOutput = hOutputOrigin + static_cast<int32_t>(i);
int32_t wOutput = wOutputOrigin + static_cast<int32_t>(j);
if (hOutput >= 0 && hOutput < static_cast<int32_t>(outputHeight) &&
wOutput >= 0 && wOutput < static_cast<int32_t>(outputWidth)) {
uint32_t filterIndex =
k * filterHeight * filterWidth * inputDepth +
i * filterWidth * inputDepth + j * inputDepth + d;
uint32_t outputIndex = hOutput * outputWidth * outputDepth +
wOutput * outputDepth + k;
outputBase[outputIndex] +=
(static_cast<int32_t>(*inputPtr) + inputOffset) *
static_cast<int32_t>(filterData[filterIndex]);
}
}
}
}
inputPtr++;
}
}
}
outputBase += outputHeight * outputWidth * outputDepth;
}
const uint32_t outerSize = numBatches * outputHeight * outputWidth;
int32_t* bufferPtr = tempBuffer;
uint8_t* outPtr = outputData;
for (uint32_t i = 0; i < outerSize; i++) {
for (uint32_t d = 0; d < outputDepth; d++, bufferPtr++, outPtr++) {
int32_t outVal = *bufferPtr + biasData[d];
outVal = tflite::MultiplyByQuantizedMultiplier(outVal, outputMultiplier[d],
-outputShift[d]);
outVal += outputOffset;
outVal = std::max(std::min(outVal, output_activation_max), output_activation_min);
*outPtr = static_cast<uint8_t>(outVal);
}
}
return true;
}
#undef ANDROID_NN_TRANSPOSE_CONV_PARAMETERS
} // namespace nn
} // namespace android