| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "Operations.h" |
| #include "CpuOperationUtils.h" |
| |
| #include "tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h" |
| #include "tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h" |
| |
| #include "Tracing.h" |
| |
| namespace android { |
| namespace nn { |
| |
| bool fullyConnectedFloat32(const float* inputData, const Shape& inputShape, |
| const float* weightsData, const Shape& weightsShape, |
| const float* biasData, const Shape& biasShape, |
| int32_t activation, |
| float* outputData, const Shape& outputShape) { |
| NNTRACE_TRANS("fullyConnectedFloat32"); |
| float output_activation_min, output_activation_max; |
| CalculateActivationRangeFloat(activation, &output_activation_min, |
| &output_activation_max); |
| |
| // b/80425683, optimized implementation produces incorrect results when the |
| // number of input elements is the squre of batch_size. |
| uint32_t batch_size = getSizeOfDimension(outputShape, 0); |
| uint32_t input_n_elements = getNumberOfElements(inputShape); |
| if (batch_size * batch_size == input_n_elements) { |
| NNTRACE_COMP_SWITCH("reference_ops::FullyConnected"); |
| tflite::reference_ops::FullyConnected( |
| inputData, convertShapeToDims(inputShape), |
| weightsData, convertShapeToDims(weightsShape), |
| biasData, convertShapeToDims(biasShape), |
| output_activation_min, output_activation_max, |
| outputData, convertShapeToDims(outputShape)); |
| } else { |
| NNTRACE_COMP_SWITCH("optimized_ops::FullyConnected"); |
| tflite::optimized_ops::FullyConnected( |
| inputData, convertShapeToDims(inputShape), |
| weightsData, convertShapeToDims(weightsShape), |
| biasData, convertShapeToDims(biasShape), |
| output_activation_min, output_activation_max, |
| outputData, convertShapeToDims(outputShape)); |
| } |
| return true; |
| } |
| |
| bool fullyConnectedQuant8(const uint8_t* inputData, const Shape& inputShape, |
| const uint8_t* weightsData, const Shape& weightsShape, |
| const int32_t* biasData, const Shape& biasShape, |
| int32_t activation, |
| uint8_t* outputData, const Shape& outputShape) { |
| NNTRACE_TRANS("fullyConnectedQuant8"); |
| int32_t inputOffset = -inputShape.offset; |
| int32_t weightsOffset = -weightsShape.offset; |
| int32_t outputOffset = outputShape.offset; |
| |
| float real_multiplier = 0.0; |
| int32_t output_multiplier = 0; |
| int32_t output_shift = 0; |
| int32_t output_activation_min = 0; |
| int32_t output_activation_max = 0; |
| |
| if (!GetQuantizedConvolutionMultipler(inputShape, weightsShape, biasShape, |
| outputShape, &real_multiplier) || |
| !QuantizeMultiplierSmallerThanOne(real_multiplier, &output_multiplier, |
| &output_shift)) { |
| return false; |
| } |
| CalculateActivationRangeUint8(activation, outputShape, |
| &output_activation_min, |
| &output_activation_max); |
| |
| static thread_local gemmlowp::GemmContext gemm_context; |
| // Alow gemmlowp automatically decide how many threads to use. |
| gemm_context.set_max_num_threads(0); |
| |
| NNTRACE_COMP_SWITCH("optimized_ops::FullyConnected"); |
| tflite::optimized_ops::FullyConnected( |
| inputData, convertShapeToDims(inputShape), inputOffset, |
| weightsData, convertShapeToDims(weightsShape), weightsOffset, |
| biasData, convertShapeToDims(biasShape), |
| outputOffset, output_multiplier, output_shift, |
| output_activation_min, output_activation_max, |
| outputData, convertShapeToDims(outputShape), &gemm_context); |
| |
| return true; |
| } |
| } // namespace nn |
| } // namespace android |