| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "Operations.h" |
| #include "CpuOperationUtils.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include "tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h" |
| |
| #include "Tracing.h" |
| |
| namespace android { |
| namespace nn { |
| |
| inline bool l2normFloat32Impl(const float* inputData, const Shape& inputShape, int32_t axis, |
| float* outputData, const Shape& outputShape) { |
| NNTRACE_TRANS("l2normFloat32"); |
| const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); |
| const uint32_t axisSize = getSizeOfDimension(inputShape, axis); |
| const uint32_t innerSize = |
| getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); |
| for (uint32_t outer = 0; outer < outerSize; ++outer) { |
| const float* inputBeg = inputData + outer * axisSize * innerSize; |
| const float* inputEnd = inputBeg + axisSize * innerSize; |
| float* outputBeg = outputData + outer * axisSize * innerSize; |
| for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBeg, ++inputEnd, ++outputBeg) { |
| float sum = 0.0f; |
| for (const float* p = inputBeg; p < inputEnd; p += innerSize) { |
| float val = *p; |
| sum += val * val; |
| } |
| float l2_norm = std::sqrt(sum); |
| float* pOut = outputBeg; |
| for (const float* p = inputBeg; p < inputEnd; p += innerSize, pOut += innerSize) { |
| *pOut = *p / l2_norm; |
| } |
| } |
| } |
| return true; |
| } |
| |
| bool l2normFloat32(const float* inputData, const Shape& inputShape, int32_t axis, float* outputData, |
| const Shape& outputShape) { |
| int32_t ndim = getNumberOfDimensions(inputShape); |
| NN_CHECK(handleNegativeAxis(inputShape, &axis)); |
| // TFLite optimized implementation only supports computation along the last axis |
| if (axis == ndim - 1) { |
| NNTRACE_COMP("optimized_ops::L2Normalization::float"); |
| tflite::L2NormalizationParams param = {.input_zero_point = 0}; |
| tflite::optimized_ops::L2Normalization(param, convertShapeToTflshape(inputShape), inputData, |
| convertShapeToTflshape(outputShape), outputData); |
| return true; |
| } else { |
| return l2normFloat32Impl(inputData, inputShape, axis, outputData, outputShape); |
| } |
| } |
| |
| inline bool localResponseNormFloat32Impl(const float* inputData, const Shape& inputShape, |
| int32_t radius, float bias, float alpha, float beta, |
| int32_t axis, float* outputData, |
| const Shape& outputShape) { |
| NNTRACE_TRANS("localResponseNormFloat32"); |
| const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); |
| const uint32_t axisSize = getSizeOfDimension(inputShape, axis); |
| const uint32_t innerSize = |
| getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); |
| for (uint32_t outer = 0; outer < outerSize; ++outer) { |
| const float* inputBase = inputData + outer * axisSize * innerSize; |
| float* outputBase = outputData + outer * axisSize * innerSize; |
| for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBase, ++outputBase) { |
| for (int32_t i = 0; i < axisSize; i++) { |
| const int32_t dBegin = std::max(0, i - radius); |
| // Add 1 on dEnd to comply with optimized_ops in TFLite |
| const int32_t dEnd = std::min(static_cast<int32_t>(axisSize), i + radius + 1); |
| float sum = 0.0f; |
| for (int32_t d = dBegin; d < dEnd; d++) { |
| float val = inputBase[d * innerSize]; |
| sum += val * val; |
| } |
| float multiplier = std::pow(bias + alpha * sum, -beta); |
| outputBase[i * innerSize] = inputBase[i * innerSize] * multiplier; |
| } |
| } |
| } |
| return true; |
| } |
| |
| bool localResponseNormFloat32(const float* inputData, const Shape& inputShape, int32_t radius, |
| float bias, float alpha, float beta, int32_t axis, float* outputData, |
| const Shape& outputShape) { |
| int32_t ndim = getNumberOfDimensions(inputShape); |
| NN_CHECK(handleNegativeAxis(inputShape, &axis)); |
| // TFLite optimized implementation only supports computation along the last axis |
| if (axis == ndim - 1) { |
| NNTRACE_COMP("optimized_ops::LocalResponseNormalization::float"); |
| tflite::LocalResponseNormalizationParams param = { |
| .range = radius, .bias = bias, .alpha = alpha, .beta = beta}; |
| tflite::optimized_ops::LocalResponseNormalization( |
| param, convertShapeToTflshape(inputShape), inputData, |
| convertShapeToTflshape(outputShape), outputData); |
| return true; |
| } else { |
| return localResponseNormFloat32Impl(inputData, inputShape, radius, bias, alpha, beta, axis, |
| outputData, outputShape); |
| } |
| } |
| } // namespace nn |
| } // namespace android |