blob: aff2dfb8e40669d1b6ef07c1f0f9a41ef2d783a1 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Operations.h"
#include "OperationsUtils.h"
#include "internal/optimized/optimized_ops.h"
#include "internal/reference/reference_ops.h"
namespace android {
namespace nn {
// If possible we will use this static buffer for the tensor.
static constexpr int kStaticBufferSize = 1605632;
static char static_scratch_buffer[kStaticBufferSize];
bool convFloat32Prepare(const Shape& input,
const Shape& filter,
const Shape& bias,
int32_t padding,
int32_t stride_width, int32_t stride_height,
Shape* output) {
DCHECK_EQ(getNumberOfDimensions(input), 4);
DCHECK_EQ(getNumberOfDimensions(filter), 4);
DCHECK_EQ(getNumberOfDimensions(bias), 1);
DCHECK_EQ(getSizeOfDimension(filter, 3), getSizeOfDimension(bias, 0));
DCHECK_EQ(stride_width, stride_height);
uint32_t channels_out = getSizeOfDimension(filter, 0);
uint32_t width = getSizeOfDimension(input, 2);
uint32_t height = getSizeOfDimension(input, 1);
uint32_t filterWidth = getSizeOfDimension(filter, 2);
uint32_t filterHeight = getSizeOfDimension(filter, 1);
uint32_t batches = getSizeOfDimension(input, 0);
// Matching GetWindowedOutputSize in TensorFlow.
// TODO: changing this to explicit padding.
auto computeOutSize = [padding](uint32_t imageSize, uint32_t filterSize,
uint32_t stride) -> int {
return padding == kPaddingSame
? (imageSize + stride - 1) / stride
: padding == kPaddingValid
? (imageSize - filterSize + stride) / stride
: 0;
};
uint32_t outWidth = computeOutSize(width, filterWidth, stride_width);
uint32_t outHeight = computeOutSize(height, filterHeight, stride_height);
output->type = input.type;
output->dimensions = {batches, outHeight, outWidth, channels_out};
return true;
}
bool convFloat32(const float* inputData, const Shape& inputShape,
const float* filterData, const Shape& filterShape,
const float* biasData, const Shape& biasShape,
int32_t padding, int32_t stride_width, int32_t stride_height, int32_t activation,
float* outputData, const Shape& outputShape) {
uint32_t height = getSizeOfDimension(inputShape, 1);
uint32_t width = getSizeOfDimension(inputShape, 2);
uint32_t filterHeight = getSizeOfDimension(filterShape, 1);
uint32_t filterWidth = getSizeOfDimension(filterShape, 2);
uint32_t outHeight = getSizeOfDimension(outputShape, 1);
uint32_t outWidth = getSizeOfDimension(outputShape, 2);
uint32_t inDepth = getSizeOfDimension(inputShape, 3);
uint32_t paddingHeight =
ComputePadding(stride_height, height, filterHeight, outHeight);
uint32_t paddingWidth =
ComputePadding(stride_width, width, filterWidth, outWidth);
Dims<4> im2colDim;
im2colDim.sizes[3] = (int)getSizeOfDimension(outputShape, 0);
im2colDim.sizes[2] = (int)getSizeOfDimension(outputShape, 1);
im2colDim.sizes[1] = (int)getSizeOfDimension(outputShape, 2);
im2colDim.sizes[0] = (int)inDepth * filterHeight * filterWidth;
im2colDim.strides[0] = 1;
for (int i=1; i<4; i++) {
im2colDim.strides[i] = im2colDim.strides[i-1] * im2colDim.sizes[i-1];
}
float* im2colData = nullptr;
int im2colByteSize = sizeof(float);
for (int i=0; i<4; i++) {
im2colByteSize *= im2colDim.sizes[i];
}
if (im2colByteSize <= kStaticBufferSize) {
im2colData = reinterpret_cast<float *>(static_scratch_buffer);
} else {
im2colData = new (std::nothrow) float[im2colByteSize / sizeof(float)];
}
#define ANDROID_NN_CONV(activation) \
optimized_ops::Conv<FusedActivationFunctionType::activation>( \
inputData, convertShapeToDims(inputShape), \
filterData, convertShapeToDims(filterShape), \
biasData, convertShapeToDims(biasShape), \
stride_width, paddingWidth, paddingHeight, \
outputData, convertShapeToDims(outputShape), \
im2colData, im2colDim)
if (activation == kActivationNone) {
ANDROID_NN_CONV(kNone);
}
if (activation == kActivationRelu) {
ANDROID_NN_CONV(kRelu);
}
if (activation == kActivationRelu6) {
ANDROID_NN_CONV(kRelu6);
}
#undef ANDROID_NN_CONV
if (im2colByteSize > kStaticBufferSize) {
delete[] im2colData;
}
return true;
}
} // namespace nn
} // namespace android