blob: 0a328b3db7b5fa7e71da40df29e40a0bb0aca568 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Operations.h"
#include "OperationsUtils.h"
#include "internal/optimized/optimized_ops.h"
#include "internal/reference/reference_ops.h"
namespace android {
namespace nn {
bool genericPoolingFloat32Prepare(const Shape& input,
int32_t padding,
int32_t stride_width, int32_t stride_height,
int32_t filter_width, int32_t filter_height,
Shape* output) {
DCHECK_EQ(getNumberOfDimensions(input), 4);
DCHECK_EQ(stride_width, stride_height);
uint32_t batches = getSizeOfDimension(input, 0);
uint32_t width = getSizeOfDimension(input, 2);
uint32_t height = getSizeOfDimension(input, 1);
uint32_t channels_out = getSizeOfDimension(input, 3);
// Matching GetWindowedOutputSize in TensorFlow.
auto computeOutSize = [padding](uint32_t imageSize, uint32_t filterSize,
uint32_t stride) -> int {
return padding == kPaddingSame
? (imageSize + stride - 1) / stride
: padding == kPaddingValid
? (imageSize - filterSize + stride) / stride
: 0;
};
uint32_t outWidth = computeOutSize(width, filter_width, stride_width);
uint32_t outHeight = computeOutSize(height, filter_height, stride_height);
output->type = input.type;
output->dimensions = {batches, outHeight, outWidth, channels_out};
return true;
}
bool averagePoolFloat32(const float* inputData, const Shape& inputShape,
int32_t padding, int32_t stride_width, int32_t stride_height,
int32_t filter_width, int32_t filter_height, int32_t activation,
float* outputData, const Shape& outputShape) {
uint32_t height = getSizeOfDimension(inputShape, 1);
uint32_t width = getSizeOfDimension(inputShape, 2);
uint32_t outHeight = getSizeOfDimension(outputShape, 1);
uint32_t outWidth = getSizeOfDimension(outputShape, 2);
uint32_t paddingHeight =
ComputePadding(stride_height, height, filter_height, outHeight);
uint32_t paddingWidth =
ComputePadding(stride_width, width, filter_width, outWidth);
#define ANDROID_NN_AVERAGE_POOL(activation) \
optimized_ops::AveragePool<FusedActivationFunctionType::activation>( \
inputData, convertShapeToDims(inputShape), \
stride_width, paddingWidth, paddingHeight, \
filter_width, filter_height, \
outputData, convertShapeToDims(outputShape))
if (activation == kActivationNone) {
ANDROID_NN_AVERAGE_POOL(kNone);
}
if (activation == kActivationRelu) {
ANDROID_NN_AVERAGE_POOL(kRelu);
}
if (activation == kActivationRelu6) {
ANDROID_NN_AVERAGE_POOL(kRelu6);
}
#undef ANDROID_NN_AVERAGE_POOL
return true;
}
bool l2PoolFloat32(const float* inputData, const Shape& inputShape,
int32_t padding, int32_t stride_width, int32_t stride_height,
int32_t filter_width, int32_t filter_height, int32_t activation,
float* outputData, const Shape& outputShape) {
uint32_t height = getSizeOfDimension(inputShape, 1);
uint32_t width = getSizeOfDimension(inputShape, 2);
uint32_t outHeight = getSizeOfDimension(outputShape, 1);
uint32_t outWidth = getSizeOfDimension(outputShape, 2);
uint32_t paddingHeight =
ComputePadding(stride_height, height, filter_height, outHeight);
uint32_t paddingWidth =
ComputePadding(stride_width, width, filter_width, outWidth);
#define ANDROID_NN_L2_POOL(activation) \
optimized_ops::L2Pool<FusedActivationFunctionType::activation>( \
inputData, convertShapeToDims(inputShape), \
stride_width, paddingWidth, paddingHeight, \
filter_width, filter_height, \
outputData, convertShapeToDims(outputShape))
if (activation == kActivationNone) {
ANDROID_NN_L2_POOL(kNone);
}
if (activation == kActivationRelu) {
ANDROID_NN_L2_POOL(kRelu);
}
if (activation == kActivationRelu6) {
ANDROID_NN_L2_POOL(kRelu6);
}
#undef ANDROID_NN_L2_POOL
return true;
}
bool maxPoolFloat32(const float* inputData, const Shape& inputShape,
int32_t padding, int32_t stride_width, int32_t stride_height,
int32_t filter_width, int32_t filter_height, int32_t activation,
float* outputData, const Shape& outputShape) {
uint32_t height = getSizeOfDimension(inputShape, 1);
uint32_t width = getSizeOfDimension(inputShape, 2);
uint32_t outHeight = getSizeOfDimension(outputShape, 1);
uint32_t outWidth = getSizeOfDimension(outputShape, 2);
uint32_t paddingHeight =
ComputePadding(stride_height, height, filter_height, outHeight);
uint32_t paddingWidth =
ComputePadding(stride_width, width, filter_width, outWidth);
#define ANDROID_NN_MAX_POOL(activation) \
optimized_ops::MaxPool<FusedActivationFunctionType::activation>( \
inputData, convertShapeToDims(inputShape), \
stride_width, paddingWidth, paddingHeight, \
filter_width, filter_height, \
outputData, convertShapeToDims(outputShape))
if (activation == kActivationNone) {
ANDROID_NN_MAX_POOL(kNone);
}
if (activation == kActivationRelu) {
ANDROID_NN_MAX_POOL(kRelu);
}
if (activation == kActivationRelu6) {
ANDROID_NN_MAX_POOL(kRelu6);
}
#undef ANDROID_NN_MAX_POOL
return true;
}
} // namespace nn
} // namespace android