blob: db6e657224d5d881af2d09b6915f50eaa06d1de9 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Provides C++ classes to more easily use the Neural Networks API.
#ifndef ANDROID_ML_NN_RUNTIME_NEURAL_NETWORKS_WRAPPER_H
#define ANDROID_ML_NN_RUNTIME_NEURAL_NETWORKS_WRAPPER_H
#include "NeuralNetworks.h"
#include <vector>
namespace android {
namespace nn {
namespace wrapper {
enum class Type {
FLOAT16 = ANEURALNETWORKS_FLOAT16,
FLOAT32 = ANEURALNETWORKS_FLOAT32,
INT8 = ANEURALNETWORKS_INT8,
UINT8 = ANEURALNETWORKS_UINT8,
INT16 = ANEURALNETWORKS_INT16,
UINT16 = ANEURALNETWORKS_UINT16,
INT32 = ANEURALNETWORKS_INT32,
UINT32 = ANEURALNETWORKS_UINT32,
TENSOR_FLOAT16 = ANEURALNETWORKS_TENSOR_FLOAT16,
TENSOR_FLOAT32 = ANEURALNETWORKS_TENSOR_FLOAT32,
TENSOR_SYMMETRICAL_QUANT8 = ANEURALNETWORKS_TENSOR_SYMMETRICAL_QUANT8,
};
enum class ExecutePreference {
PREFER_LOW_POWER = ANEURALNETWORKS_PREFER_LOW_POWER,
PREFER_FAST_SINGLE_ANSWER = ANEURALNETWORKS_PREFER_FAST_SINGLE_ANSWER,
PREFER_SUSTAINED_SPEED = ANEURALNETWORKS_PREFER_SUSTAINED_SPEED
};
enum class Result {
NO_ERROR = ANEURALNETWORKS_NO_ERROR,
OUT_OF_MEMORY = ANEURALNETWORKS_OUT_OF_MEMORY,
INCOMPLETE = ANEURALNETWORKS_INCOMPLETE,
UNEXPECTED_NULL = ANEURALNETWORKS_UNEXPECTED_NULL,
BAD_DATA = ANEURALNETWORKS_BAD_DATA,
};
struct OperandType {
ANeuralNetworksOperandType operandType;
// uint32_t type;
std::vector<uint32_t> dimensions;
OperandType(Type type, const std::vector<uint32_t>& d) : dimensions(d) {
operandType.type = static_cast<uint32_t>(type);
operandType.dimensions.count = static_cast<uint32_t>(dimensions.size());
operandType.dimensions.data = dimensions.data();
}
};
inline Result Initialize() {
return static_cast<Result>(ANeuralNetworksInitialize());
}
inline void Shutdown() {
ANeuralNetworksShutdown();
}
class Model {
public:
Model() {
// TODO handle the value returned by this call
ANeuralNetworksModel_create(&mModel);
}
~Model() { ANeuralNetworksModel_free(mModel); }
uint32_t addOperand(const OperandType* type) {
if (ANeuralNetworksModel_addOperand(mModel, &(type->operandType)) !=
ANEURALNETWORKS_NO_ERROR) {
mValid = false;
}
return mNextOperandId++;
}
void setOperandValue(uint32_t index, const void* buffer, size_t length) {
if (ANeuralNetworksModel_setOperandValue(mModel, index, buffer, length) !=
ANEURALNETWORKS_NO_ERROR) {
mValid = false;
}
}
void addOperation(ANeuralNetworksOperationType type, const std::vector<uint32_t>& inputs,
const std::vector<uint32_t>& outputs) {
ANeuralNetworksIntList in, out;
Set(&in, inputs);
Set(&out, outputs);
if (ANeuralNetworksModel_addOperation(mModel, type, &in, &out) !=
ANEURALNETWORKS_NO_ERROR) {
mValid = false;
}
}
void setInputsAndOutputs(const std::vector<uint32_t>& inputs,
const std::vector<uint32_t>& outputs) {
ANeuralNetworksIntList in, out;
Set(&in, inputs);
Set(&out, outputs);
if (ANeuralNetworksModel_setInputsAndOutputs(mModel, &in, &out) !=
ANEURALNETWORKS_NO_ERROR) {
mValid = false;
}
}
ANeuralNetworksModel* getHandle() const { return mModel; }
bool isValid() const { return mValid; }
static Model* createBaselineModel(uint32_t modelId) {
Model* model = new Model();
if (ANeuralNetworksModel_createBaselineModel(&model->mModel, modelId) !=
ANEURALNETWORKS_NO_ERROR) {
delete model;
model = nullptr;
}
return model;
}
private:
/**
* WARNING list won't be valid once vec is destroyed or modified.
*/
void Set(ANeuralNetworksIntList* list, const std::vector<uint32_t>& vec) {
list->count = static_cast<uint32_t>(vec.size());
list->data = vec.data();
}
ANeuralNetworksModel* mModel = nullptr;
// We keep track of the operand ID as a convenience to the caller.
uint32_t mNextOperandId = 0;
bool mValid = true;
};
class Event {
public:
~Event() { ANeuralNetworksEvent_free(mEvent); }
Result wait() { return static_cast<Result>(ANeuralNetworksEvent_wait(mEvent)); }
void set(ANeuralNetworksEvent* newEvent) {
ANeuralNetworksEvent_free(mEvent);
mEvent = newEvent;
}
private:
ANeuralNetworksEvent* mEvent = nullptr;
};
class Request {
public:
Request(const Model* model) {
int result = ANeuralNetworksRequest_create(model->getHandle(), &mRequest);
if (result != 0) {
// TODO Handle the error
}
}
~Request() { ANeuralNetworksRequest_free(mRequest); }
Result setPreference(ExecutePreference preference) {
return static_cast<Result>(ANeuralNetworksRequest_setPreference(
mRequest, static_cast<uint32_t>(preference)));
}
Result setInput(uint32_t index, const void* buffer, size_t length,
const ANeuralNetworksOperandType* type = nullptr) {
return static_cast<Result>(
ANeuralNetworksRequest_setInput(mRequest, index, type, buffer, length));
}
Result setInputFromHardwareBuffer(uint32_t index, const AHardwareBuffer* buffer,
const ANeuralNetworksOperandType* type) {
return static_cast<Result>(ANeuralNetworksRequest_setInputFromHardwareBuffer(
mRequest, index, type, buffer));
}
Result setOutput(uint32_t index, void* buffer, size_t length,
const ANeuralNetworksOperandType* type = nullptr) {
return static_cast<Result>(
ANeuralNetworksRequest_setOutput(mRequest, index, type, buffer, length));
}
Result setOutputFromHardwareBuffer(uint32_t index, const AHardwareBuffer* buffer,
const ANeuralNetworksOperandType* type = nullptr) {
return static_cast<Result>(ANeuralNetworksRequest_setOutputFromHardwareBuffer(
mRequest, index, type, buffer));
}
Result startCompute(Event* event) {
ANeuralNetworksEvent* ev = nullptr;
Result result = static_cast<Result>(ANeuralNetworksRequest_startCompute(mRequest, &ev));
event->set(ev);
return result;
}
Result compute() {
ANeuralNetworksEvent* event = nullptr;
Result result = static_cast<Result>(ANeuralNetworksRequest_startCompute(mRequest, &event));
if (result != Result::NO_ERROR) {
return result;
}
// TODO how to manage the lifetime of events when multiple waiters is not
// clear.
return static_cast<Result>(ANeuralNetworksEvent_wait(event));
}
private:
ANeuralNetworksRequest* mRequest = nullptr;
};
} // namespace wrapper
} // namespace nn
} // namespace android
#endif // ANDROID_ML_NN_RUNTIME_NEURAL_NETWORKS_WRAPPER_H