| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "ModelBuilder" |
| |
| #include "ModelBuilder.h" |
| |
| #include <algorithm> |
| #include <map> |
| #include <memory> |
| #include <set> |
| #include <utility> |
| #include <vector> |
| |
| #include "CompilationBuilder.h" |
| #include "GraphDump.h" |
| #include "Manager.h" |
| #include "TypeManager.h" |
| #include "Utils.h" |
| #include "ValidateHal.h" |
| |
| namespace android { |
| namespace nn { |
| |
| using namespace hal; |
| |
| // The maximum number of operands and operations that a model may have. |
| const uint32_t MAX_NUMBER_OF_OPERANDS = 0xFFFFFFFE; |
| const uint32_t MAX_NUMBER_OF_OPERATIONS = 0xFFFFFFFE; |
| |
| bool ModelBuilder::badState(const char* name) { |
| if (mCompletedModel) { |
| LOG(ERROR) << "ANeuralNetworksModel_" << name << " can't modify after model finished"; |
| return true; |
| } |
| if (mInvalidModel) { |
| LOG(ERROR) << "ANeuralNetworksModel_" << name << " can't modify an invalid model"; |
| return true; |
| } |
| return false; |
| } |
| |
| int ModelBuilder::getExtensionType(const char* extensionName, uint16_t typeWithinExtension, |
| int32_t* type) { |
| return TypeManager::get()->getExtensionType(extensionName, typeWithinExtension, type) |
| ? ANEURALNETWORKS_NO_ERROR |
| : ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| int ModelBuilder::addOperand(const ANeuralNetworksOperandType& type) { |
| if (badState("addOperand")) { |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| |
| OperandType operandType = static_cast<OperandType>(type.type); |
| if (isExtensionOperandType(operandType) && !TypeManager::get()->areExtensionsAllowed()) { |
| LOG(ERROR) << "Extensions are not supported for this process."; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| bool isOemOperand = |
| operandType == OperandType::OEM || operandType == OperandType::TENSOR_OEM_BYTE; |
| if (isOemOperand && !mHasOEMOperand) { |
| LOG(WARNING) << "OEM data type is deprecated. Use Extensions instead."; |
| } |
| |
| const Extension::OperandTypeInformation* info = nullptr; |
| if (isExtensionOperandType(operandType) && |
| !TypeManager::get()->getExtensionOperandTypeInfo(operandType, &info)) { |
| LOG(ERROR) << "Extension operand type " << toString(operandType) << " is not registered"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| NN_RETURN_IF_ERROR(validateOperandType(type, info, "ANeuralNetworksModel_addOperand", true)); |
| size_t idx = mOperands.size(); |
| if (idx >= MAX_NUMBER_OF_OPERANDS) { |
| LOG(ERROR) << "ANeuralNetworksModel_addOperand exceed max operands"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| mOperands.push_back({ |
| .type = operandType, |
| .dimensions = |
| hidl_vec<uint32_t>(type.dimensions, type.dimensions + type.dimensionCount), |
| .numberOfConsumers = 0, |
| .scale = type.scale, |
| .zeroPoint = type.zeroPoint, |
| .lifetime = OperandLifeTime::TEMPORARY_VARIABLE, |
| .location = {.poolIndex = 0, .offset = 0, .length = 0}, |
| .extraParams = Operand::ExtraParams(), |
| }); |
| mHasOEMOperand |= isOemOperand; |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ModelBuilder::setOperandValue(uint32_t index, const void* buffer, size_t length) { |
| VLOG(MODEL) << __func__ << " for operand " << index << " size " << length; |
| if (badState("setOperandValue")) { |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| |
| if (index >= operandCount()) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandValue setting operand " << index << " of " |
| << operandCount(); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| Operand& operand = mOperands[index]; |
| if (buffer == nullptr) { |
| if (length) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandValue buffer is nullptr but length is " |
| "not 0"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| operand.lifetime = OperandLifeTime::NO_VALUE; |
| // The location is unused and is set to zeros. |
| operand.location = {.poolIndex = 0, .offset = 0, .length = 0}; |
| } else { |
| if (TypeManager::get()->isTensorType(operand.type) && |
| tensorHasUnspecifiedDimensions(operand)) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandValue setting operand " << index |
| << " which has operand type that is not fully specified"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| if (length > 0xFFFFFFFF) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandValue value length of " << length |
| << " exceeds max size"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| uint32_t valueLength = static_cast<uint32_t>(length); |
| if (operand.type != OperandType::OEM) { |
| uint32_t neededLength = TypeManager::get()->getSizeOfData(operand); |
| if (neededLength != valueLength) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandValue setting " << valueLength |
| << " bytes when needing " << neededLength; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| } |
| if (valueLength <= ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES) { |
| uint32_t existingSize = static_cast<uint32_t>(mSmallOperandValues.size()); |
| uint32_t extraBytes = alignBytesNeeded(existingSize, valueLength); |
| mSmallOperandValues.resize(existingSize + extraBytes + valueLength); |
| operand.lifetime = OperandLifeTime::CONSTANT_COPY; |
| operand.location = { |
| .poolIndex = 0, .offset = existingSize + extraBytes, .length = valueLength}; |
| memcpy(&mSmallOperandValues[operand.location.offset], buffer, valueLength); |
| VLOG(MODEL) << "Copied small value to offset " << operand.location.offset; |
| } else { |
| VLOG(MODEL) << "Saving large value"; |
| operand.lifetime = OperandLifeTime::CONSTANT_REFERENCE; |
| // The values for poolIndex and offset will be set when the model is finished. |
| typedef decltype(operand.location.poolIndex) PoolIndexType; |
| typedef decltype(operand.location.offset) OffsetType; |
| operand.location = {.poolIndex = ~PoolIndexType(0), |
| .offset = ~OffsetType(0), |
| .length = valueLength}; |
| // We keep track of the buffers. We'll allocate the shared memory only |
| // once we know the total size, to avoid needless copies. |
| mLargeOperandValues.push_back(LargeValue{.operandIndex = index, .buffer = buffer}); |
| } |
| } |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ModelBuilder::setOperandValueFromModel(uint32_t index, const ModelBuilder* value) { |
| VLOG(MODEL) << __func__ << " for operand " << index << " model " << value; |
| if (badState("setOperandValueFromModel")) { |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (!value->mCompletedModel) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromModel value model must be finished"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (value->mInvalidModel) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromModel value model is invalid"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (index >= operandCount()) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromModel setting operand " << index |
| << " of " << operandCount(); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| Operand& operand = mOperands[index]; |
| operand.lifetime = OperandLifeTime::SUBGRAPH; |
| operand.location = { |
| .poolIndex = 0, |
| .offset = static_cast<uint32_t>(mReferencedModels.size()), |
| .length = 0, |
| }; |
| mReferencedModels.push_back(value); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ModelBuilder::setOperandSymmPerChannelQuantParams( |
| uint32_t index, const ANeuralNetworksSymmPerChannelQuantParams& channelQuant) { |
| if (badState("setOperandSymmPerChannelQuantParams")) { |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| |
| if (index >= operandCount()) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandSymmPerChannelQuantParams " |
| << "setting per-channel quantization parameters for operand " << index << " of " |
| << operandCount(); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| Operand& operand = mOperands[index]; |
| |
| if (!validateOperandSymmPerChannelQuantParams( |
| operand, channelQuant, |
| "ANeuralNetworksModel_setOperandSymmPerChannelQuantParams")) { |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| switch (operand.type) { |
| case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: |
| operand.extraParams.channelQuant({ |
| .scales = hidl_vec<float>(channelQuant.scales, |
| channelQuant.scales + channelQuant.scaleCount), |
| .channelDim = channelQuant.channelDim, |
| }); |
| break; |
| default: |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandSymmPerChannelQuantParams " |
| << "invalid operand type " << static_cast<int32_t>(operand.type); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ModelBuilder::setOperandExtensionData(uint32_t index, const void* data, size_t length) { |
| if (badState("setOperandExtensionData")) { |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| |
| if (index >= operandCount()) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandExtensionData " |
| << "setting extension data for operand " << index << " of " << operandCount(); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| Operand& operand = mOperands[index]; |
| |
| if (data == nullptr && length != 0) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandExtensionData data is nullptr but length is " |
| << length; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| if (data != nullptr && length == 0) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandExtensionData data is not nullptr but length " |
| << "is zero"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| if (!isExtensionOperandType(operand.type)) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandExtensionData " |
| << "setting extension data for a base operand type " |
| << static_cast<int32_t>(operand.type); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| if (data == nullptr) { |
| operand.extraParams.none(); |
| } else { |
| operand.extraParams.extension( |
| hidl_vec<uint8_t>(reinterpret_cast<const uint8_t*>(data), |
| reinterpret_cast<const uint8_t*>(data) + length)); |
| } |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ModelBuilder::copyLargeValuesToSharedMemory() { |
| VLOG(MODEL) << __func__ << " has " << mLargeOperandValues.size() << " values."; |
| if (!mLargeOperandValues.empty()) { |
| // Calculate the size of the shared memory needed for all the large values. |
| // Also sets the offset for each value within the memory. |
| size_t poolSize = 0; |
| for (LargeValue& l : mLargeOperandValues) { |
| Operand& operand = mOperands[l.operandIndex]; |
| nnAssert(operand.lifetime == OperandLifeTime::CONSTANT_REFERENCE); |
| poolSize += alignBytesNeeded(poolSize, operand.location.length); |
| operand.location.offset = poolSize; |
| poolSize += operand.location.length; |
| } |
| |
| // Allocate the shared memory. |
| int n; |
| std::tie(n, mLargeValueMemory) = MemoryAshmem::create(poolSize); |
| NN_RETURN_IF_ERROR(n); |
| uint8_t* memoryPointer = mLargeValueMemory->getPointer(); |
| uint32_t poolIndex = mMemories.add(mLargeValueMemory.get()); |
| VLOG(MODEL) << "Allocated large value pool of size " << poolSize << " at index " |
| << poolIndex; |
| |
| // Copy the values to this memory. |
| for (LargeValue& l : mLargeOperandValues) { |
| Operand& operand = mOperands[l.operandIndex]; |
| operand.location.poolIndex = poolIndex; |
| memcpy(memoryPointer + operand.location.offset, l.buffer, operand.location.length); |
| } |
| } |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ModelBuilder::setOperandValueFromMemory(uint32_t index, const Memory* memory, uint32_t offset, |
| size_t length) { |
| VLOG(MODEL) << __func__ << " for operand " << index << " offset " << offset << " size " |
| << length; |
| if (badState("setOperandValueFromMemory")) { |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| |
| if (index >= operandCount()) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromMemory setting operand " << index |
| << " of " << operandCount(); |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| Operand& operand = mOperands[index]; |
| if (TypeManager::get()->isTensorType(operand.type) && tensorHasUnspecifiedDimensions(operand)) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromMemory setting operand " << index |
| << " which has operand type that is not fully specified"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| uint32_t neededLength = TypeManager::get()->getSizeOfData(operand); |
| if (neededLength != length) { |
| LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromMemory setting " << length |
| << " bytes when needing " << neededLength; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| // Set compilation = nullptr to indicate that the memory is used for a model constant. |
| // In this case, IOType::INPUT is a dummy value that is ignored by the validator. |
| if (!memory->getValidator().validate(/*compilation=*/nullptr, /*dummy*/ IOType::INPUT, index, |
| nullptr, offset, length)) { |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| operand.lifetime = OperandLifeTime::CONSTANT_REFERENCE; |
| operand.location = {.poolIndex = mMemories.add(memory), |
| .offset = offset, |
| .length = static_cast<uint32_t>(length)}; |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ModelBuilder::addOperation(ANeuralNetworksOperationType type, uint32_t inputCount, |
| const uint32_t* inputs, uint32_t outputCount, |
| const uint32_t* outputs) { |
| if (badState("addOperation")) { |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| |
| OperationType operationType = static_cast<OperationType>(type); |
| if (isExtensionOperationType(operationType) && !TypeManager::get()->areExtensionsAllowed()) { |
| LOG(ERROR) << "Extensions are not supported for this process."; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| if (operationType == OperationType::OEM_OPERATION && !mHasOEMOperation) { |
| LOG(WARNING) << "OEM_OPERATION is deprecated. Use Extensions instead."; |
| } |
| |
| if (!isExtensionOperationType(operationType)) { |
| if (!validCode(kNumberOfOperationTypes, kNumberOfOperationTypesOEM, type)) { |
| LOG(ERROR) << "ANeuralNetworksModel_addOperation invalid operation type " << type; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| } |
| |
| auto isValidSubgraphReference = [this](const Operand& modelOperand) -> bool { |
| NN_RET_CHECK(modelOperand.type == OperandType::SUBGRAPH) |
| << "Unexpected operand type: " << toString(modelOperand.type); |
| NN_RET_CHECK_LT(modelOperand.location.offset, referencedModelCount()) |
| << "Invalid subgraph model reference"; |
| return true; |
| }; |
| auto getInputCount = [this](const Operand& modelOperand) { |
| return getReferencedModel(modelOperand)->inputCount(); |
| }; |
| auto getOutputCount = [this](const Operand& modelOperand) { |
| return getReferencedModel(modelOperand)->outputCount(); |
| }; |
| auto getInputOperand = [this](const Operand& modelOperand, uint32_t index) { |
| return getReferencedModel(modelOperand)->getInputOperand(index); |
| }; |
| auto getOutputOperand = [this](const Operand& modelOperand, uint32_t index) { |
| return getReferencedModel(modelOperand)->getOutputOperand(index); |
| }; |
| NN_RETURN_IF_ERROR(validateOperation(type, inputCount, inputs, outputCount, outputs, mOperands, |
| HalVersion::LATEST, |
| {.isValidSubgraphReference = isValidSubgraphReference, |
| .getSubgraphInputCount = getInputCount, |
| .getSubgraphOutputCount = getOutputCount, |
| .getSubgraphInputOperand = getInputOperand, |
| .getSubgraphOutputOperand = getOutputOperand})); |
| |
| uint32_t operationIndex = operationCount(); |
| if (operationIndex >= MAX_NUMBER_OF_OPERATIONS) { |
| LOG(ERROR) << "ANeuralNetworksModel_addOperation exceed max operations"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| mOperations.push_back({ |
| .type = operationType, |
| .inputs = hidl_vec<uint32_t>(inputs, inputs + inputCount), |
| .outputs = hidl_vec<uint32_t>(outputs, outputs + outputCount), |
| }); |
| for (uint32_t i : mOperations.back().inputs) { |
| mOperands[i].numberOfConsumers++; |
| } |
| mHasOEMOperation |= (operationType == OperationType::OEM_OPERATION); |
| mHasExtensionOperation |= isExtensionOperationType(operationType); |
| |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ModelBuilder::identifyInputsAndOutputs(uint32_t inputCount, const uint32_t* inputs, |
| uint32_t outputCount, const uint32_t* outputs) { |
| if (badState("identifyInputsAndOutputs")) { |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| |
| int n = validateOperandList(inputCount, inputs, operandCount(), |
| "ANeuralNetworksModel_identifyInputsAndOutputs inputs"); |
| if (n != ANEURALNETWORKS_NO_ERROR) { |
| return n; |
| } |
| n = validateOperandList(outputCount, outputs, operandCount(), |
| "ANeuralNetworksModel_identifyInputsAndOutputs outputs"); |
| if (n != ANEURALNETWORKS_NO_ERROR) { |
| return n; |
| } |
| |
| // Makes a copy of the index list, validates the arguments, and changes |
| // the lifetime info of the corresponding operand. |
| auto setArguments = [&](std::vector<uint32_t>* indexVector, uint32_t indexCount, |
| const uint32_t* indexList, OperandLifeTime lifetime) -> bool { |
| indexVector->resize(indexCount); |
| for (uint32_t i = 0; i < indexCount; i++) { |
| const uint32_t operandIndex = indexList[i]; |
| if (operandIndex >= mOperands.size()) { |
| LOG(ERROR) << "ANeuralNetworksModel_identifyInputsAndOutputs Can't set input or " |
| "output " |
| "to be " |
| << operandIndex << " as this exceeds the numbe of operands " |
| << mOperands.size(); |
| return false; |
| } |
| (*indexVector)[i] = operandIndex; |
| Operand& operand = mOperands[operandIndex]; |
| if (operand.lifetime != OperandLifeTime::TEMPORARY_VARIABLE) { |
| LOG(ERROR) << "ANeuralNetworksModel_identifyInputsAndOutputs Can't set operand " |
| << operandIndex |
| << " to be an input or output. Check that it's not a constant or " |
| "already an input or output"; |
| return false; |
| } |
| operand.lifetime = lifetime; |
| } |
| return true; |
| }; |
| |
| if (!setArguments(&mInputIndexes, inputCount, inputs, OperandLifeTime::SUBGRAPH_INPUT) || |
| !setArguments(&mOutputIndexes, outputCount, outputs, OperandLifeTime::SUBGRAPH_OUTPUT)) { |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ModelBuilder::relaxComputationFloat32toFloat16(bool allow) { |
| if (badState("relaxComputationFloat32toFloat16")) { |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| |
| mRelaxComputationFloat32toFloat16 = allow; |
| |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int ModelBuilder::createCompilation(CompilationBuilder** compilation, |
| const std::vector<std::shared_ptr<Device>>& devices, |
| bool explicitDeviceList) { |
| if (!mCompletedModel || mInvalidModel) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_create passed an unfinished or invalid model"; |
| *compilation = nullptr; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| *compilation = new (std::nothrow) CompilationBuilder(this, devices, explicitDeviceList); |
| return (*compilation ? ANEURALNETWORKS_NO_ERROR : ANEURALNETWORKS_OUT_OF_MEMORY); |
| } |
| |
| int ModelBuilder::finish() { |
| if (mCompletedModel) { |
| LOG(ERROR) << "ANeuralNetworksModel_finish called more than once"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (mInvalidModel) { |
| LOG(ERROR) << "ANeuralNetworksModel_finish called on an invalid model"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| |
| int n = copyLargeValuesToSharedMemory(); |
| if (n != ANEURALNETWORKS_NO_ERROR) { |
| return n; |
| } |
| |
| // TODO: Modify validation so that it can be called without creating a HAL Model. |
| // NOTE: Must copyLargeValuesToSharedMemory() before validation; otherwise, |
| // a CONSTANT_REFERENCE operand will not have correct .poolIndex, and |
| // validation will not work properly. |
| const Model modelForValidation = makeHidlModel(); |
| if (!validateModel(modelForValidation)) { |
| LOG(ERROR) << "ANeuralNetworksModel_finish called on invalid model"; |
| mInvalidModel = true; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| if (VLOG_IS_ON(MODEL)) { |
| graphDump("ModelBuilder::finish", modelForValidation, nullptr); |
| } |
| |
| // We sort the operations so that they will be in the appropriate |
| // order for a single-threaded, op at a time execution. |
| // TODO: we don't need this if we always run the partitioner. |
| sortIntoRunOrder(); |
| mCompletedModel = true; |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| void ModelBuilder::sortIntoRunOrder() { |
| if (!mSortedOperationIndexMap.empty()) { |
| LOG(ERROR) << "Operations already in run order."; |
| return; |
| } |
| // Tracks the operations that can be executed. |
| std::vector<uint32_t> opsReadyToRun; |
| std::vector<Operation> runOrder; |
| |
| // Tracks how many inputs are needed for each operation to be ready to run. |
| std::multimap<uint32_t, uint32_t> operandToOperations; |
| std::vector<uint32_t> unknownInputCount(operationCount()); |
| for (uint32_t operationIndex = 0; operationIndex < operationCount(); operationIndex++) { |
| uint32_t& count = unknownInputCount[operationIndex]; |
| count = 0; |
| for (uint32_t operandIndex : mOperations[operationIndex].inputs) { |
| auto lifetime = mOperands[operandIndex].lifetime; |
| if (lifetime == OperandLifeTime::TEMPORARY_VARIABLE || |
| lifetime == OperandLifeTime::SUBGRAPH_OUTPUT) { |
| count++; |
| operandToOperations.insert( |
| std::pair<uint32_t, uint32_t>(operandIndex, operationIndex)); |
| } |
| } |
| if (count == 0) { |
| opsReadyToRun.push_back(operationIndex); |
| } |
| } |
| |
| while (opsReadyToRun.size() > 0) { |
| // Execute the next op |
| int opIndex = opsReadyToRun.back(); |
| opsReadyToRun.pop_back(); |
| const Operation& operation = mOperations[opIndex]; |
| |
| runOrder.push_back(mOperations[opIndex]); |
| mSortedOperationIndexMap.push_back(opIndex); |
| |
| // Mark all its outputs as known. |
| for (uint32_t operandIndex : operation.outputs) { |
| auto range = operandToOperations.equal_range(operandIndex); |
| for (auto i = range.first; i != range.second; i++) { |
| uint32_t& count = unknownInputCount[i->second]; |
| if (--count == 0) { |
| opsReadyToRun.push_back(i->second); |
| } |
| } |
| } |
| } |
| mOperations = runOrder; |
| } |
| |
| // A helper class to simplify state management when creating a HIDL model. |
| class ModelBuilder::HidlModelMaker { |
| public: |
| static Model run(const ModelBuilder* model); |
| |
| private: |
| static Subgraph makeSubgraph(const ModelBuilder* model); |
| HidlModelMaker() {} |
| Model makeHidlModel(const ModelBuilder* mainModel); |
| uint32_t addSubgraph(const ModelBuilder* refModel); |
| void updateOperandLocations(const ModelBuilder* refModel, Subgraph* subgraph); |
| void addExtensions(const ModelBuilder* model); |
| void addExtensionWithPrefix(uint16_t prefix); |
| |
| std::vector<Subgraph> mRefSubgraphs; |
| std::vector<uint8_t> mOperandValues; |
| MemoryTracker mMemories; |
| std::vector<ExtensionNameAndPrefix> mExtensionNameToPrefix; |
| std::set<uint16_t> mPrefixSet; |
| }; |
| |
| Model ModelBuilder::makeHidlModel() const { |
| // TODO: Cache the HIDL model to speed up subsequent calls. |
| return HidlModelMaker::run(this); |
| } |
| |
| Model ModelBuilder::HidlModelMaker::run(const ModelBuilder* model) { |
| // run() ensures the state of HidlModelMaker is destroyed after the call. |
| return HidlModelMaker().makeHidlModel(model); |
| } |
| |
| Model ModelBuilder::HidlModelMaker::makeHidlModel(const ModelBuilder* mainModel) { |
| addExtensions(mainModel); |
| Model model; |
| model.main = makeSubgraph(mainModel); |
| updateOperandLocations(mainModel, &model.main); |
| model.referenced = std::move(mRefSubgraphs); |
| model.operandValues = std::move(mOperandValues); |
| model.pools.resize(mMemories.size()); |
| std::transform(mMemories.begin(), mMemories.end(), model.pools.begin(), |
| [](const Memory* m) { return m->getHidlMemory(); }); |
| model.relaxComputationFloat32toFloat16 = mainModel->mRelaxComputationFloat32toFloat16; |
| model.extensionNameToPrefix = std::move(mExtensionNameToPrefix); |
| return model; |
| } |
| |
| Subgraph ModelBuilder::HidlModelMaker::makeSubgraph(const ModelBuilder* model) { |
| Subgraph subgraph; |
| subgraph.operands = model->mOperands; |
| subgraph.operations = model->mOperations; |
| subgraph.inputIndexes = model->mInputIndexes; |
| subgraph.outputIndexes = model->mOutputIndexes; |
| return subgraph; |
| } |
| |
| void ModelBuilder::HidlModelMaker::updateOperandLocations(const ModelBuilder* refModel, |
| Subgraph* subgraph) { |
| for (Operand& operand : subgraph->operands) { |
| if (operand.lifetime == OperandLifeTime::CONSTANT_COPY) { |
| uint32_t valueLength = operand.location.length; |
| uint32_t existingSize = mOperandValues.size(); |
| uint32_t extraBytes = alignBytesNeeded(existingSize, valueLength); |
| uint32_t originalOffset = operand.location.offset; |
| uint32_t offset = existingSize + extraBytes; |
| mOperandValues.resize(offset + valueLength); |
| memcpy(&mOperandValues[offset], &refModel->mSmallOperandValues[originalOffset], |
| valueLength); |
| operand.location.offset = offset; |
| } else if (operand.lifetime == OperandLifeTime::CONSTANT_REFERENCE) { |
| uint32_t originalPoolIndex = operand.location.poolIndex; |
| operand.location.poolIndex = mMemories.add(refModel->mMemories[originalPoolIndex]); |
| } |
| } |
| // Do recursive calls at the end to improve locality of mOperandValues. |
| for (Operand& operand : subgraph->operands) { |
| if (operand.lifetime == OperandLifeTime::SUBGRAPH) { |
| uint32_t refModelIndex = operand.location.offset; |
| // TODO(b/147875885): Avoid creating duplicate refSubgraphs when |
| // a single refModel is referenced multiple times. |
| operand.location.offset = addSubgraph(refModel->mReferencedModels[refModelIndex]); |
| } |
| } |
| } |
| |
| uint32_t ModelBuilder::HidlModelMaker::addSubgraph(const ModelBuilder* refModel) { |
| uint32_t index = mRefSubgraphs.size(); |
| mRefSubgraphs.push_back(makeSubgraph(refModel)); |
| updateOperandLocations(refModel, &mRefSubgraphs.back()); |
| return index; |
| } |
| |
| void ModelBuilder::HidlModelMaker::addExtensions(const ModelBuilder* model) { |
| constexpr uint8_t kLowBitsType = static_cast<uint8_t>(ExtensionTypeEncoding::LOW_BITS_TYPE); |
| for (const auto& operand : model->mOperands) { |
| if (isExtensionOperandType(operand.type)) { |
| addExtensionWithPrefix(static_cast<uint32_t>(operand.type) >> kLowBitsType); |
| } |
| } |
| for (const auto& operation : model->mOperations) { |
| if (isExtensionOperationType(operation.type)) { |
| addExtensionWithPrefix(static_cast<uint32_t>(operation.type) >> kLowBitsType); |
| } |
| } |
| for (const auto& refModel : model->mReferencedModels) { |
| addExtensions(refModel); |
| } |
| } |
| |
| void ModelBuilder::HidlModelMaker::addExtensionWithPrefix(uint16_t prefix) { |
| if (!mPrefixSet.insert(prefix).second) { |
| return; |
| } |
| const Extension* extension; |
| CHECK(TypeManager::get()->getExtensionInfo(prefix, &extension)); |
| mExtensionNameToPrefix.push_back({ |
| .name = extension->name, |
| .prefix = prefix, |
| }); |
| } |
| |
| } // namespace nn |
| } // namespace android |