blob: f2a94e7b41a19b52acc47d074321a96b50f6aa9d [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "SampleDriver"
#include "SampleDriver.h"
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <hidl/LegacySupport.h>
#include <algorithm>
#include <chrono>
#include <map>
#include <memory>
#include <optional>
#include <thread>
#include <tuple>
#include <utility>
#include <vector>
#include "CpuExecutor.h"
#include "ExecutionBurstServer.h"
#include "HalInterfaces.h"
#include "SampleDriverUtils.h"
#include "Tracing.h"
#include "ValidateHal.h"
namespace android {
namespace nn {
namespace sample_driver {
namespace {
using namespace hal;
using time_point = std::chrono::steady_clock::time_point;
auto now() {
return std::chrono::steady_clock::now();
};
auto microsecondsDuration(decltype(now()) end, decltype(now()) start) {
return std::chrono::duration_cast<std::chrono::microseconds>(end - start).count();
};
} // namespace
static const Timing kNoTiming = {.timeOnDevice = UINT64_MAX, .timeInDriver = UINT64_MAX};
Return<void> SampleDriver::getCapabilities(getCapabilities_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INITIALIZATION,
"SampleDriver::getCapabilities");
return getCapabilities_1_3([&](ErrorStatus error, const V1_3::Capabilities& capabilities) {
// TODO(dgross): Do we need to check compliantWithV1_0(capabilities)?
cb(convertToV1_0(error), convertToV1_0(capabilities));
});
}
Return<void> SampleDriver::getCapabilities_1_1(getCapabilities_1_1_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INITIALIZATION,
"SampleDriver::getCapabilities_1_1");
return getCapabilities_1_3([&](ErrorStatus error, const V1_3::Capabilities& capabilities) {
// TODO(dgross): Do we need to check compliantWithV1_1(capabilities)?
cb(convertToV1_0(error), convertToV1_1(capabilities));
});
}
Return<void> SampleDriver::getCapabilities_1_2(getCapabilities_1_2_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INITIALIZATION,
"SampleDriver::getCapabilities_1_2");
return getCapabilities_1_3([&](ErrorStatus error, const V1_3::Capabilities& capabilities) {
// TODO(dgross): Do we need to check compliantWithV1_2(capabilities)?
cb(convertToV1_0(error), convertToV1_2(capabilities));
});
}
Return<void> SampleDriver::getVersionString(getVersionString_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INITIALIZATION,
"SampleDriver::getVersionString");
cb(V1_0::ErrorStatus::NONE, "JUST_AN_EXAMPLE");
return Void();
}
Return<void> SampleDriver::getType(getType_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INITIALIZATION, "SampleDriver::getType");
cb(V1_0::ErrorStatus::NONE, V1_2::DeviceType::CPU);
return Void();
}
Return<void> SampleDriver::getSupportedExtensions(getSupportedExtensions_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INITIALIZATION,
"SampleDriver::getSupportedExtensions");
cb(V1_0::ErrorStatus::NONE, {/* No extensions. */});
return Void();
}
Return<void> SampleDriver::getSupportedOperations(const V1_0::Model& model,
getSupportedOperations_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_COMPILATION,
"SampleDriver::getSupportedOperations");
if (!validateModel(model)) {
VLOG(DRIVER) << "getSupportedOperations";
cb(V1_0::ErrorStatus::INVALID_ARGUMENT, {});
return Void();
}
return getSupportedOperations_1_3(convertToV1_3(model),
[&](ErrorStatus status, const hidl_vec<bool>& supported) {
cb(convertToV1_0(status), supported);
});
}
Return<void> SampleDriver::getSupportedOperations_1_1(const V1_1::Model& model,
getSupportedOperations_1_1_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_COMPILATION,
"SampleDriver::getSupportedOperations_1_1");
if (!validateModel(model)) {
VLOG(DRIVER) << "getSupportedOperations_1_1";
cb(V1_0::ErrorStatus::INVALID_ARGUMENT, {});
return Void();
}
return getSupportedOperations_1_3(convertToV1_3(model),
[&](ErrorStatus status, const hidl_vec<bool>& supported) {
cb(convertToV1_0(status), supported);
});
}
Return<void> SampleDriver::getSupportedOperations_1_2(const V1_2::Model& model,
getSupportedOperations_1_2_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_COMPILATION,
"SampleDriver::getSupportedOperations_1_2");
if (!validateModel(model)) {
VLOG(DRIVER) << "getSupportedOperations_1_2";
cb(V1_0::ErrorStatus::INVALID_ARGUMENT, {});
return Void();
}
return getSupportedOperations_1_3(convertToV1_3(model),
[&](ErrorStatus status, const hidl_vec<bool>& supported) {
cb(convertToV1_0(status), supported);
});
}
Return<void> SampleDriver::getNumberOfCacheFilesNeeded(getNumberOfCacheFilesNeeded_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INITIALIZATION,
"SampleDriver::getNumberOfCacheFilesNeeded");
// Set both numbers to be 0 for cache not supported.
cb(V1_0::ErrorStatus::NONE, /*numModelCache=*/0, /*numDataCache=*/0);
return Void();
}
Return<void> SampleDriver::supportsDeadlines(supportsDeadlines_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INITIALIZATION,
"SampleDriver::supportsDeadlines");
// Set both numbers to be false for deadlines not supported.
cb(/*prepareModelDeadline=*/false, /*executionDeadline=*/false);
return Void();
}
Return<V1_0::ErrorStatus> SampleDriver::prepareModel(
const V1_0::Model& model, const sp<V1_0::IPreparedModelCallback>& callback) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_COMPILATION, "SampleDriver::prepareModel");
const ErrorStatus status = prepareModelBase(
model, this, ExecutionPreference::FAST_SINGLE_ANSWER, kDefaultPriority, {}, callback);
return convertToV1_0(status);
}
Return<V1_0::ErrorStatus> SampleDriver::prepareModel_1_1(
const V1_1::Model& model, ExecutionPreference preference,
const sp<V1_0::IPreparedModelCallback>& callback) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_COMPILATION, "SampleDriver::prepareModel_1_1");
const ErrorStatus status =
prepareModelBase(model, this, preference, kDefaultPriority, {}, callback);
return convertToV1_0(status);
}
Return<V1_0::ErrorStatus> SampleDriver::prepareModel_1_2(
const V1_2::Model& model, ExecutionPreference preference, const hidl_vec<hidl_handle>&,
const hidl_vec<hidl_handle>&, const CacheToken&,
const sp<V1_2::IPreparedModelCallback>& callback) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_COMPILATION, "SampleDriver::prepareModel_1_2");
const ErrorStatus status =
prepareModelBase(model, this, preference, kDefaultPriority, {}, callback);
return convertToV1_0(status);
}
Return<V1_3::ErrorStatus> SampleDriver::prepareModel_1_3(
const V1_3::Model& model, ExecutionPreference preference, Priority priority,
const OptionalTimePoint& deadline, const hidl_vec<hidl_handle>&,
const hidl_vec<hidl_handle>&, const CacheToken&,
const sp<V1_3::IPreparedModelCallback>& callback) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_COMPILATION, "SampleDriver::prepareModel_1_3");
return prepareModelBase(model, this, preference, priority, deadline, callback);
}
Return<V1_0::ErrorStatus> SampleDriver::prepareModelFromCache(
const hidl_vec<hidl_handle>&, const hidl_vec<hidl_handle>&, const CacheToken&,
const sp<V1_2::IPreparedModelCallback>& callback) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_COMPILATION,
"SampleDriver::prepareModelFromCache");
notify(callback, ErrorStatus::GENERAL_FAILURE, nullptr);
return V1_0::ErrorStatus::GENERAL_FAILURE;
}
Return<ErrorStatus> SampleDriver::prepareModelFromCache_1_3(
Priority /*priority*/, const OptionalTimePoint& /*deadline*/, const hidl_vec<hidl_handle>&,
const hidl_vec<hidl_handle>&, const CacheToken&,
const sp<V1_3::IPreparedModelCallback>& callback) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_COMPILATION,
"SampleDriver::prepareModelFromCache_1_3");
notify(callback, ErrorStatus::GENERAL_FAILURE, nullptr);
return ErrorStatus::GENERAL_FAILURE;
}
Return<DeviceStatus> SampleDriver::getStatus() {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_UNSPECIFIED, "SampleDriver::getStatus");
VLOG(DRIVER) << "getStatus()";
return DeviceStatus::AVAILABLE;
}
Return<void> SampleDriver::allocate(const V1_3::BufferDesc& /*desc*/,
const hidl_vec<sp<V1_3::IPreparedModel>>& /*preparedModels*/,
const hidl_vec<V1_3::BufferRole>& /*inputRoles*/,
const hidl_vec<V1_3::BufferRole>& /*outputRoles*/,
allocate_cb cb) {
VLOG(DRIVER) << "SampleDriver::allocate";
// TODO(xusongw): Implement memory domain in sample driver.
cb(ErrorStatus::GENERAL_FAILURE, nullptr, 0);
return Void();
}
int SampleDriver::run() {
android::hardware::configureRpcThreadpool(4, true);
if (registerAsService(mName) != android::OK) {
LOG(ERROR) << "Could not register service";
return 1;
}
android::hardware::joinRpcThreadpool();
LOG(ERROR) << "Service exited!";
return 1;
}
bool SamplePreparedModel::initialize() {
return setRunTimePoolInfosFromHidlMemories(&mPoolInfos, mModel.pools);
}
template <typename T_IExecutionCallback>
void asyncExecute(const Request& request, MeasureTiming measure, time_point driverStart,
const Model& model, const SampleDriver& driver,
const std::vector<RunTimePoolInfo>& poolInfos,
const sp<T_IExecutionCallback>& callback) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INPUTS_AND_OUTPUTS,
"SampleDriver::asyncExecute");
std::vector<RunTimePoolInfo> requestPoolInfos;
if (!setRunTimePoolInfosFromMemoryPools(&requestPoolInfos, request.pools)) {
notify(callback, ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
return;
}
NNTRACE_FULL_SWITCH(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_EXECUTION,
"SampleDriver::asyncExecute");
CpuExecutor executor = driver.getExecutor();
time_point driverEnd, deviceStart, deviceEnd;
if (measure == MeasureTiming::YES) deviceStart = now();
int n = executor.run(model, request, poolInfos, requestPoolInfos);
if (measure == MeasureTiming::YES) deviceEnd = now();
VLOG(DRIVER) << "executor.run returned " << n;
ErrorStatus executionStatus = convertResultCodeToErrorStatus(n);
hidl_vec<OutputShape> outputShapes = executor.getOutputShapes();
if (measure == MeasureTiming::YES && executionStatus == ErrorStatus::NONE) {
driverEnd = now();
Timing timing = {.timeOnDevice = uint64_t(microsecondsDuration(deviceEnd, deviceStart)),
.timeInDriver = uint64_t(microsecondsDuration(driverEnd, driverStart))};
VLOG(DRIVER) << "SampleDriver::asyncExecute timing = " << toString(timing);
notify(callback, executionStatus, outputShapes, timing);
} else {
notify(callback, executionStatus, outputShapes, kNoTiming);
}
}
template <typename T_IExecutionCallback>
ErrorStatus executeBase(const Request& request, MeasureTiming measure, const Model& model,
const SampleDriver& driver, const std::vector<RunTimePoolInfo>& poolInfos,
const OptionalTimePoint& deadline,
const sp<T_IExecutionCallback>& callback) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_EXECUTION, "SampleDriver::executeBase");
VLOG(DRIVER) << "executeBase(" << SHOW_IF_DEBUG(toString(request)) << ")";
time_point driverStart;
if (measure == MeasureTiming::YES) driverStart = now();
if (callback.get() == nullptr) {
LOG(ERROR) << "invalid callback passed to executeBase";
return ErrorStatus::INVALID_ARGUMENT;
}
if (!validateRequest(request, model)) {
notify(callback, ErrorStatus::INVALID_ARGUMENT, {}, kNoTiming);
return ErrorStatus::INVALID_ARGUMENT;
}
if (deadline.getDiscriminator() != OptionalTimePoint::hidl_discriminator::none) {
notify(callback, ErrorStatus::INVALID_ARGUMENT, {}, kNoTiming);
return ErrorStatus::INVALID_ARGUMENT;
}
// This thread is intentionally detached because the sample driver service
// is expected to live forever.
std::thread([&model, &driver, &poolInfos, request, measure, driverStart, callback] {
asyncExecute(request, measure, driverStart, model, driver, poolInfos, callback);
}).detach();
return ErrorStatus::NONE;
}
Return<V1_0::ErrorStatus> SamplePreparedModel::execute(
const V1_0::Request& request, const sp<V1_0::IExecutionCallback>& callback) {
const ErrorStatus status = executeBase(convertToV1_3(request), MeasureTiming::NO, mModel,
*mDriver, mPoolInfos, {}, callback);
return convertToV1_0(status);
}
Return<V1_0::ErrorStatus> SamplePreparedModel::execute_1_2(
const V1_0::Request& request, MeasureTiming measure,
const sp<V1_2::IExecutionCallback>& callback) {
const ErrorStatus status = executeBase(convertToV1_3(request), measure, mModel, *mDriver,
mPoolInfos, {}, callback);
return convertToV1_0(status);
}
Return<V1_3::ErrorStatus> SamplePreparedModel::execute_1_3(
const V1_3::Request& request, MeasureTiming measure, const OptionalTimePoint& deadline,
const sp<V1_3::IExecutionCallback>& callback) {
return executeBase(request, measure, mModel, *mDriver, mPoolInfos, deadline, callback);
}
static std::tuple<ErrorStatus, hidl_vec<OutputShape>, Timing> executeSynchronouslyBase(
const Request& request, MeasureTiming measure, const Model& model,
const SampleDriver& driver, const std::vector<RunTimePoolInfo>& poolInfos,
const OptionalTimePoint& deadline) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_EXECUTION,
"SampleDriver::executeSynchronouslyBase");
VLOG(DRIVER) << "executeSynchronouslyBase(" << SHOW_IF_DEBUG(toString(request)) << ")";
time_point driverStart, driverEnd, deviceStart, deviceEnd;
if (measure == MeasureTiming::YES) driverStart = now();
if (!validateRequest(request, model)) {
return {ErrorStatus::INVALID_ARGUMENT, {}, kNoTiming};
}
if (deadline.getDiscriminator() != OptionalTimePoint::hidl_discriminator::none) {
return {ErrorStatus::INVALID_ARGUMENT, {}, kNoTiming};
}
NNTRACE_FULL_SWITCH(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INPUTS_AND_OUTPUTS,
"SampleDriver::executeSynchronouslyBase");
std::vector<RunTimePoolInfo> requestPoolInfos;
if (!setRunTimePoolInfosFromMemoryPools(&requestPoolInfos, request.pools)) {
return {ErrorStatus::GENERAL_FAILURE, {}, kNoTiming};
}
NNTRACE_FULL_SWITCH(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_EXECUTION,
"SampleDriver::executeSynchronouslyBase");
CpuExecutor executor = driver.getExecutor();
if (measure == MeasureTiming::YES) deviceStart = now();
int n = executor.run(model, request, poolInfos, requestPoolInfos);
if (measure == MeasureTiming::YES) deviceEnd = now();
VLOG(DRIVER) << "executor.run returned " << n;
ErrorStatus executionStatus = convertResultCodeToErrorStatus(n);
hidl_vec<OutputShape> outputShapes = executor.getOutputShapes();
if (measure == MeasureTiming::YES && executionStatus == ErrorStatus::NONE) {
driverEnd = now();
Timing timing = {.timeOnDevice = uint64_t(microsecondsDuration(deviceEnd, deviceStart)),
.timeInDriver = uint64_t(microsecondsDuration(driverEnd, driverStart))};
VLOG(DRIVER) << "executeSynchronouslyBase timing = " << toString(timing);
return {executionStatus, std::move(outputShapes), timing};
}
return {executionStatus, std::move(outputShapes), kNoTiming};
}
Return<void> SamplePreparedModel::executeSynchronously(const V1_0::Request& request,
MeasureTiming measure,
executeSynchronously_cb cb) {
auto [status, outputShapes, timing] = executeSynchronouslyBase(
convertToV1_3(request), measure, mModel, *mDriver, mPoolInfos, {});
cb(convertToV1_0(status), std::move(outputShapes), timing);
return Void();
}
Return<void> SamplePreparedModel::executeSynchronously_1_3(const V1_3::Request& request,
MeasureTiming measure,
const OptionalTimePoint& deadline,
executeSynchronously_1_3_cb cb) {
auto [status, outputShapes, timing] =
executeSynchronouslyBase(request, measure, mModel, *mDriver, mPoolInfos, deadline);
cb(status, std::move(outputShapes), timing);
return Void();
}
// BurstExecutorWithCache maps hidl_memory when it is first seen, and preserves
// the mapping until either (1) the memory is freed in the runtime, or (2) the
// burst object is destroyed. This allows for subsequent executions operating on
// pools that have been used before to reuse the mapping instead of mapping and
// unmapping the memory on each execution.
class BurstExecutorWithCache : public ExecutionBurstServer::IBurstExecutorWithCache {
public:
BurstExecutorWithCache(const Model& model, const SampleDriver* driver,
const std::vector<RunTimePoolInfo>& poolInfos)
: mModel(model), mDriver(driver), mModelPoolInfos(poolInfos) {}
bool isCacheEntryPresent(int32_t slot) const override {
const auto it = mMemoryCache.find(slot);
return (it != mMemoryCache.end()) && it->second.has_value();
}
void addCacheEntry(const hidl_memory& memory, int32_t slot) override {
mMemoryCache[slot] = RunTimePoolInfo::createFromHidlMemory(memory);
}
void removeCacheEntry(int32_t slot) override { mMemoryCache.erase(slot); }
std::tuple<V1_0::ErrorStatus, hidl_vec<OutputShape>, Timing> execute(
const V1_0::Request& request, const std::vector<int32_t>& slots,
MeasureTiming measure) override {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_EXECUTION,
"BurstExecutorWithCache::execute");
time_point driverStart, driverEnd, deviceStart, deviceEnd;
if (measure == MeasureTiming::YES) driverStart = now();
// ensure all relevant pools are valid
if (!std::all_of(slots.begin(), slots.end(),
[this](int32_t slot) { return isCacheEntryPresent(slot); })) {
return {V1_0::ErrorStatus::INVALID_ARGUMENT, {}, kNoTiming};
}
// finish the request object (for validation)
hidl_vec<Request::MemoryPool> pools(slots.size());
std::transform(slots.begin(), slots.end(), pools.begin(), [this](int32_t slot) {
Request::MemoryPool pool;
pool.hidlMemory(mMemoryCache[slot]->getHidlMemory());
return pool;
});
Request fullRequest = {.inputs = request.inputs, .outputs = request.outputs};
fullRequest.pools = std::move(pools);
// validate request object against the model
if (!validateRequest(fullRequest, mModel)) {
return {V1_0::ErrorStatus::INVALID_ARGUMENT, {}, kNoTiming};
}
// select relevant entries from cache
std::vector<RunTimePoolInfo> requestPoolInfos;
requestPoolInfos.reserve(slots.size());
std::transform(slots.begin(), slots.end(), std::back_inserter(requestPoolInfos),
[this](int32_t slot) { return *mMemoryCache[slot]; });
// execution
CpuExecutor executor = mDriver->getExecutor();
if (measure == MeasureTiming::YES) deviceStart = now();
int n = executor.run(mModel, fullRequest, mModelPoolInfos, requestPoolInfos);
if (measure == MeasureTiming::YES) deviceEnd = now();
VLOG(DRIVER) << "executor.run returned " << n;
V1_0::ErrorStatus executionStatus = convertToV1_0(convertResultCodeToErrorStatus(n));
hidl_vec<OutputShape> outputShapes = executor.getOutputShapes();
if (measure == MeasureTiming::YES && executionStatus == V1_0::ErrorStatus::NONE) {
driverEnd = now();
Timing timing = {
.timeOnDevice = uint64_t(microsecondsDuration(deviceEnd, deviceStart)),
.timeInDriver = uint64_t(microsecondsDuration(driverEnd, driverStart))};
VLOG(DRIVER) << "BurstExecutorWithCache::execute timing = " << toString(timing);
return std::make_tuple(executionStatus, outputShapes, timing);
} else {
return std::make_tuple(executionStatus, outputShapes, kNoTiming);
}
}
private:
const Model mModel;
const SampleDriver* const mDriver;
const std::vector<RunTimePoolInfo> mModelPoolInfos;
std::map<int32_t, std::optional<RunTimePoolInfo>> mMemoryCache; // cached requestPoolInfos
};
// This is the amount of time the ExecutionBurstServer should spend polling the
// FMQ to see if it has data available before it should fall back to waiting on
// the futex.
static std::chrono::microseconds getPollingTimeWindow() {
constexpr int32_t defaultPollingTimeWindow = 50;
#ifdef NN_DEBUGGABLE
constexpr int32_t minPollingTimeWindow = 0;
const int32_t selectedPollingTimeWindow =
base::GetIntProperty("debug.nn.sample-driver-burst-polling-window",
defaultPollingTimeWindow, minPollingTimeWindow);
return std::chrono::microseconds{selectedPollingTimeWindow};
#else
return std::chrono::microseconds{defaultPollingTimeWindow};
#endif // NN_DEBUGGABLE
}
Return<void> SamplePreparedModel::configureExecutionBurst(
const sp<V1_2::IBurstCallback>& callback,
const MQDescriptorSync<V1_2::FmqRequestDatum>& requestChannel,
const MQDescriptorSync<V1_2::FmqResultDatum>& resultChannel,
configureExecutionBurst_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_EXECUTION,
"SampleDriver::configureExecutionBurst");
const bool preferPowerOverLatency = (kPreference == ExecutionPreference::LOW_POWER);
const auto pollingTimeWindow =
(preferPowerOverLatency ? std::chrono::microseconds{0} : getPollingTimeWindow());
// Alternatively, the burst could be configured via:
// const sp<V1_2::IBurstContext> burst =
// ExecutionBurstServer::create(callback, requestChannel,
// resultChannel, this,
// pollingTimeWindow);
//
// However, this alternative representation does not include a memory map
// caching optimization, and adds overhead.
const std::shared_ptr<BurstExecutorWithCache> executorWithCache =
std::make_shared<BurstExecutorWithCache>(mModel, mDriver, mPoolInfos);
const sp<V1_2::IBurstContext> burst = ExecutionBurstServer::create(
callback, requestChannel, resultChannel, executorWithCache, pollingTimeWindow);
if (burst == nullptr) {
cb(V1_0::ErrorStatus::GENERAL_FAILURE, {});
} else {
cb(V1_0::ErrorStatus::NONE, burst);
}
return Void();
}
} // namespace sample_driver
} // namespace nn
} // namespace android