| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "CompilationBuilder" |
| |
| #include "CompilationBuilder.h" |
| |
| #include <LegacyUtils.h> |
| #include <nnapi/IBurst.h> |
| #include <nnapi/SharedMemory.h> |
| #include <nnapi/Types.h> |
| |
| #include <algorithm> |
| #include <limits> |
| #include <memory> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| #include "BurstBuilder.h" |
| #include "ExecutionBuilder.h" |
| #include "ExecutionPlan.h" |
| #include "Manager.h" |
| #include "ModelBuilder.h" |
| #include "TypeManager.h" |
| |
| namespace android { |
| namespace nn { |
| |
| CompilationBuilder::CompilationBuilder(const ModelBuilder* model, |
| const std::vector<std::shared_ptr<Device>>& devices, |
| bool explicitDeviceList) |
| : mModel(model), |
| mPartitioning(explicitDeviceList ? DeviceManager::kPartitioningWithoutFallback |
| : DeviceManager::get()->getPartitioning()), |
| mDevices(devices), |
| mExplicitDeviceList(explicitDeviceList) { |
| VLOG(COMPILATION) << "CompilationBuilder::CompilationBuilder"; |
| } |
| |
| int CompilationBuilder::finish() { |
| if (mFinished) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_finish called more than once"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| // TODO validate the rest |
| |
| // Init telemetry info, start measuring compilation time |
| mTelemetryInfo = TelemetryInfo{}; |
| const auto scopedTimeNanoMeasurer = TimeNanoMeasurer(&mTelemetryInfo->compilationTimeNanos); |
| |
| const auto deadline = makeDeadline(mTimeoutDuration); |
| |
| mFinished = true; |
| if (mIsCacheInfoProvided) { |
| mPlan.setCaching(&mCacheInfo, mToken); |
| } |
| if (mPartitioning) { |
| int n = mModel->partitionTheWork(mDevices, mPreference, mPriority, deadline, &mPlan, |
| mMetadata, mFailPartitioning); |
| switch (n) { |
| case ANEURALNETWORKS_NO_ERROR: |
| return n; |
| case ANEURALNETWORKS_UNEXPECTED_NULL: |
| case ANEURALNETWORKS_BAD_DATA: |
| // The two error codes above should only be used for errors in the user's |
| // request. In case of a user error, we won't try any fallback. |
| // TODO: Document this in NeuralNetworks.h and in the HAL. Make sure |
| // driver writers know which code they can return. |
| return n; |
| default: |
| // The error might be recoverable. Return the error only if falling back |
| // is not allowed. |
| if (!DeviceManager::partitioningAllowsFallback(mPartitioning)) { |
| return n; |
| } |
| if (mModel->hasOEMOperation()) { |
| LOG(ERROR) << "Cannot fall back to CPU because of an OEM operation"; |
| return n; |
| } |
| if (mModel->hasExtensionOperation()) { |
| LOG(ERROR) << "Cannot fall back to CPU because of an extension operation"; |
| return n; |
| } |
| break; |
| } |
| } |
| |
| // Fallback to CPU |
| mTelemetryInfo->fallbackToCpuFromError = true; |
| VLOG(COMPILATION) << "CompilationBuilder::finish with CPU fallback"; |
| mPlan.reset(); |
| mPlan.becomeSingleStep(DeviceManager::getCpuDevice(), mModel); |
| return mPlan.finish(mPreference, mPriority, deadline, mMetadata, ANEURALNETWORKS_NO_ERROR); |
| } |
| |
| int CompilationBuilder::setPreference(int32_t preference) { |
| if (mFinished) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_setPreference can't modify after compilation " |
| "finished"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (preference >= kNumberOfPreferences) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_setPreference invalid preference " << preference; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| mPreference = preference; |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int CompilationBuilder::setCaching(const std::string& cacheDir, const uint8_t* token) { |
| if (mFinished) { |
| LOG(ERROR) |
| << "ANeuralNetworksCompilation_setCaching can't modify after compilation finished"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| std::string path = cacheDir; |
| // Make sure the cache dir can concat with the filename. |
| if (!path.empty() && path.back() != '/') { |
| path.push_back('/'); |
| } |
| mCacheInfo.variant = std::move(path); |
| std::copy(token, token + ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, mToken); |
| mIsCacheInfoProvided = true; |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| static GeneralResult<SharedHandle> createCacheHandle(int fd) { |
| base::unique_fd duplicatedFd = NN_TRY(dupFd(fd)); |
| return std::make_shared<const Handle>(std::move(duplicatedFd)); |
| } |
| |
| static GeneralResult<std::vector<SharedHandle>> createCacheHandleVec(const int* fds, |
| uint32_t numFds) { |
| std::vector<SharedHandle> handles; |
| handles.reserve(numFds); |
| for (uint32_t i = 0; i < numFds; i++) { |
| handles.push_back(NN_TRY(createCacheHandle(fds[i]))); |
| } |
| return handles; |
| } |
| |
| int CompilationBuilder::setCachingFromFds(const int* modelCacheFds, |
| const uint32_t numModelCacheFiles, |
| const int* dataCacheFds, const uint32_t numDataCacheFiles, |
| const uint8_t* token) { |
| if (mFinished) { |
| LOG(ERROR) << "SL_ANeuralNetworksCompilation_setCachingFromFds can't modify after " |
| "compilation finished"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| auto modelCache = createCacheHandleVec(modelCacheFds, numModelCacheFiles); |
| if (!modelCache.has_value()) { |
| LOG(ERROR) << "SL_ANeuralNetworksCompilation_setCachingFromFds can't duplicate model cache " |
| "fds: " |
| << modelCache.error().message; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| auto dataCache = createCacheHandleVec(dataCacheFds, numDataCacheFiles); |
| if (!dataCache.has_value()) { |
| LOG(ERROR) << "SL_ANeuralNetworksCompilation_setCachingFromFds can't duplicate data cache " |
| "fds: " |
| << dataCache.error().message; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| mCacheInfo.variant = CacheHandles{ |
| .modelCache = std::move(modelCache).value(), |
| .dataCache = std::move(dataCache).value(), |
| }; |
| std::copy(token, token + ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, mToken); |
| mIsCacheInfoProvided = true; |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int CompilationBuilder::setPriority(int32_t priority) { |
| if (mFinished) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_setPriority can't modify after compilation " |
| "finished"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (priority != ANEURALNETWORKS_PRIORITY_LOW && priority != ANEURALNETWORKS_PRIORITY_MEDIUM && |
| priority != ANEURALNETWORKS_PRIORITY_HIGH) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_setPriority invalid priority " << priority; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| |
| mPriority = priority; |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int CompilationBuilder::setTimeoutDuration(uint64_t duration) { |
| if (mFinished) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_setTimeout can't modify after compilation " |
| "finished"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (!mExplicitDeviceList || (mDevices.size() != 1)) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_setTimeout called on an " |
| "ANeuralNetworksCompilation that was not created by " |
| "ANeuralNetworksCompilation_createForDevices with numDevices = 1"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| if (duration > 0) { |
| mTimeoutDuration = duration; |
| } else { |
| mTimeoutDuration.reset(); |
| } |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int CompilationBuilder::addExtensionAttribute(const char* extensionName, |
| uint16_t attributeCodeWithinExtension, |
| const void* data, size_t length) { |
| if (mFinished) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_addExtensionAttribute can't modify after " |
| "compilation finished"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (!mExplicitDeviceList || (mDevices.size() != 1)) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_addExtensionAttribute called on an " |
| "ANeuralNetworksCompilation that was not created by " |
| "ANeuralNetworksCompilation_createForDevices with numDevices = 1"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| int32_t attributeToken = 0; |
| if (!TypeManager::get()->getExtensionType(extensionName, attributeCodeWithinExtension, |
| &attributeToken)) { |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| if (std::find_if(mMetadata.begin(), mMetadata.end(), [attributeToken](const auto& entry) { |
| return attributeToken == entry.token; |
| }) != mMetadata.end()) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_addExtensionAttribute called more than once for " |
| "the same attribute"; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| const uint8_t* dataPtr = reinterpret_cast<const uint8_t*>(data); |
| mMetadata.push_back({attributeToken, std::vector<uint8_t>(dataPtr, dataPtr + length)}); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int CompilationBuilder::forTest_setPartitioning(uint32_t partitioning) { |
| if (mFinished) { |
| LOG(ERROR) << "CompilationBuilder::forTest_setPartitioning can't modify after compilation " |
| "finished"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| |
| mPartitioning = partitioning; |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int CompilationBuilder::forTest_failPartitioning(int fail) { |
| if (mFinished) { |
| LOG(ERROR) << "CompilationBuilder::forTest_failPartitioning can't modify after compilation " |
| "finished"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| |
| mFailPartitioning = fail; |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int CompilationBuilder::getPreferredMemoryAlignmentForInput(uint32_t index, |
| uint32_t* alignment) const { |
| CHECK(alignment != nullptr); |
| if (!mFinished) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_getPreferredMemoryAlignmentForInput passed an " |
| "unfinished compilation"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (!mPlan.isValid()) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_getPreferredMemoryAlignmentForInput passed an " |
| "invalid compilation"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (index >= mModel->inputCount()) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_getPreferredMemoryAlignmentForInput passed an " |
| "invalid input index " |
| << index; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| *alignment = mPlan.getMemoryPreference(IOType::INPUT, index).alignment; |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int CompilationBuilder::getPreferredMemoryPaddingForInput(uint32_t index, uint32_t* padding) const { |
| CHECK(padding != nullptr); |
| if (!mFinished) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_getPreferredMemoryPaddingForInput passed an " |
| "unfinished compilation"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (!mPlan.isValid()) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_getPreferredMemoryPaddingForInput passed an " |
| "invalid compilation"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (index >= mModel->inputCount()) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_getPreferredMemoryPaddingForInput passed an " |
| "invalid input index " |
| << index; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| *padding = mPlan.getMemoryPreference(IOType::INPUT, index).padding; |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int CompilationBuilder::getPreferredMemoryAlignmentForOutput(uint32_t index, |
| uint32_t* alignment) const { |
| CHECK(alignment != nullptr); |
| if (!mFinished) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_getPreferredMemoryAlignmentForOutput passed an " |
| "unfinished compilation"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (!mPlan.isValid()) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_getPreferredMemoryAlignmentForOutput passed an " |
| "invalid compilation"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (index >= mModel->outputCount()) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_getPreferredMemoryAlignmentForOutput passed an " |
| "invalid output index " |
| << index; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| *alignment = mPlan.getMemoryPreference(IOType::OUTPUT, index).alignment; |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int CompilationBuilder::getPreferredMemoryPaddingForOutput(uint32_t index, |
| uint32_t* padding) const { |
| CHECK(padding != nullptr); |
| if (!mFinished) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_getPreferredMemoryPaddingForOutput passed an " |
| "unfinished compilation"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (!mPlan.isValid()) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_getPreferredMemoryPaddingForOutput passed an " |
| "invalid compilation"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (index >= mModel->outputCount()) { |
| LOG(ERROR) << "ANeuralNetworksCompilation_getPreferredMemoryPaddingForOutput passed an " |
| "invalid output index " |
| << index; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| *padding = mPlan.getMemoryPreference(IOType::OUTPUT, index).padding; |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int CompilationBuilder::createExecution(ExecutionBuilder** execution) { |
| if (!mFinished) { |
| LOG(ERROR) << "ANeuralNetworksExecution_create passed an unfinished compilation"; |
| *execution = nullptr; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (!mPlan.isValid()) { |
| LOG(ERROR) << "ANeuralNetworksExecution_create passed an invalid compilation"; |
| *execution = nullptr; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (mPlan.isSimple()) { |
| *execution = new (std::nothrow) SimpleExecutionBuilder(this); |
| } else { |
| *execution = new (std::nothrow) CompoundExecutionBuilder(this); |
| } |
| return (*execution ? ANEURALNETWORKS_NO_ERROR : ANEURALNETWORKS_OUT_OF_MEMORY); |
| } |
| |
| int CompilationBuilder::createBurst(BurstBuilder** burst) { |
| if (!mFinished) { |
| LOG(ERROR) << "ANeuralNetworksBurst_create passed an unfinished compilation"; |
| *burst = nullptr; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (!mPlan.isValid()) { |
| LOG(ERROR) << "ANeuralNetworksBurst_create passed an invalid compilation"; |
| *burst = nullptr; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| std::vector<SharedBurst> burstControllers = mPlan.makeBursts(); |
| *burst = new (std::nothrow) BurstBuilder(this, std::move(burstControllers)); |
| return (*burst ? ANEURALNETWORKS_NO_ERROR : ANEURALNETWORKS_OUT_OF_MEMORY); |
| } |
| |
| int CompilationBuilder::forEachStepRoleOfInput(uint32_t index, |
| const StepRoleCallback& callback) const { |
| if (!mFinished) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_addInputRole passed an unfinished compilation"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (!mPlan.isValid()) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_addInputRole passed an invalid compilation"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (index >= mModel->inputCount()) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_addInputRole passed an invalid input index " |
| << index; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| mPlan.forEachStepRoleOfInput(index, callback); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| int CompilationBuilder::forEachStepRoleOfOutput(uint32_t index, |
| const StepRoleCallback& callback) const { |
| if (!mFinished) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_addOutputRole passed an unfinished compilation"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (!mPlan.isValid()) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_addOutputRole passed an invalid compilation"; |
| return ANEURALNETWORKS_BAD_STATE; |
| } |
| if (index >= mModel->outputCount()) { |
| LOG(ERROR) << "ANeuralNetworksMemoryDesc_addOutputRole passed an invalid output index " |
| << index; |
| return ANEURALNETWORKS_BAD_DATA; |
| } |
| mPlan.forEachStepRoleOfOutput(index, callback); |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| } // namespace nn |
| } // namespace android |