blob: 897105e6a96c4d5368769551fed721afdc99f4ae [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "CpuExecutor"
#include "CpuExecutor.h"
#include "NeuralNetworks.h"
#include "Operations.h"
namespace android {
namespace nn {
// If we don't have a buffer, allocate it.
static bool allocateIfNeeded(RunTimeOperandInfo* info, const Shape& shape) {
info->type = shape.type;
info->dimensions = shape.dimensions;
info->scale = shape.scale;
info->offset = shape.offset;
if (info->buffer == nullptr) {
uint32_t length = sizeOfData(info->type, info->dimensions);
info->buffer = new uint8_t[length];
if (info->buffer == nullptr) {
return false;
}
}
return true;
}
static int32_t getInt32ScalarData(RunTimeOperandInfo& info) {
int32_t * data = reinterpret_cast<int32_t*>(info.buffer);
return data[0];
}
// Ignore the .pools entry in model and request. This will have been taken care of
// by the caller.
int CpuExecutor::run(const Model& model, const Request& request,
const std::vector<RunTimePoolInfo>& runTimePoolInfos) {
LOG(DEBUG) << "CpuExecutor::run()";
LOG(DEBUG) << "model: " << toString(model);
LOG(DEBUG) << "request: " << toString(request);
mModel = &model;
mRequest = &request; // TODO check if mRequest is needed
initializeRunTimeInfo(runTimePoolInfos);
// The model has serialized the operation in execution order.
for (const auto& operation : model.operations) {
int n = executeOperation(operation);
if (n != ANEURALNETWORKS_NO_ERROR) {
return n;
}
}
mModel = nullptr;
mRequest = nullptr;
LOG(DEBUG) << "Completed run normally";
return ANEURALNETWORKS_NO_ERROR;
}
bool CpuExecutor::initializeRunTimeInfo(const std::vector<RunTimePoolInfo>& runTimePoolInfos) {
LOG(DEBUG) << "CpuExecutor::initializeRunTimeInfo";
const size_t count = mModel->operands.size();
mOperands.resize(count);
for (size_t i = 0; i < count; i++) {
const Operand& from = mModel->operands[i];
if (!setRunTimeOperandInfo(i, from.dimensions, from.location, from.numberOfConsumers,
runTimePoolInfos)) {
return false;
}
mOperands[i].type = from.type;
mOperands[i].scale = from.scale;
mOperands[i].offset = from.zeroPoint;
}
nnAssert(mModel->inputIndexes.size() == mRequest->inputs.size());
for (size_t i = 0; i < mModel->inputIndexes.size(); i++) {
const InputOutputInfo& from = mRequest->inputs[i];
if (!setRunTimeOperandInfo(mModel->inputIndexes[i], from.dimensions, from.location, 0,
runTimePoolInfos)) {
return false;
}
}
nnAssert(mModel->outputIndexes.size() == mRequest->outputs.size());
for (size_t i = 0; i < mModel->outputIndexes.size(); i++) {
const InputOutputInfo& from = mRequest->outputs[i];
if (!setRunTimeOperandInfo(mModel->outputIndexes[i], from.dimensions, from.location, 0,
runTimePoolInfos)) {
return false;
}
}
return true;
}
bool CpuExecutor::setRunTimeOperandInfo(uint32_t operandIndex,
const std::vector<uint32_t>& dimensions,
const DataLocation& location, uint32_t useCount,
const std::vector<RunTimePoolInfo>& runTimePoolInfos) {
LOG(DEBUG) << "CpuExecutor::setRunTimeOperand(" << operandIndex << ", " << toString(dimensions)
<< ", " << toString(location) << ")";
RunTimeOperandInfo& to = mOperands[operandIndex];
if (dimensions.size() > 0) {
to.dimensions = dimensions;
}
if (location.poolIndex == static_cast<uint32_t>(LocationValues::LOCATION_AT_RUN_TIME)) {
to.buffer = nullptr;
to.numberOfUsesLeft = useCount;
} else if (location.poolIndex == static_cast<uint32_t>(LocationValues::LOCATION_SAME_BLOCK)) {
to.buffer = const_cast<uint8_t*>(&mModel->operandValues[location.offset]);
to.numberOfUsesLeft = 0;
} else {
if (location.poolIndex >= runTimePoolInfos.size()) {
LOG(ERROR) << "For operand " << operandIndex << ", got a poolIndex id "
<< location.poolIndex << " which is >= " << runTimePoolInfos.size();
return false;
}
auto& r = runTimePoolInfos[location.poolIndex];
to.buffer = r.buffer + location.offset;
to.numberOfUsesLeft = 0;
}
to.length = location.length;
return true;
}
void CpuExecutor::freeNoLongerUsedOperands(const std::vector<uint32_t>& inputs) {
for (uint32_t i : inputs) {
auto& info = mOperands[i];
// Check if it's a static or model input/output.
if (info.numberOfUsesLeft == 0) {
continue;
}
nnAssert(mModel->operands[i].location.poolIndex ==
static_cast<uint32_t>(LocationValues::LOCATION_AT_RUN_TIME));
info.numberOfUsesLeft--;
if (info.numberOfUsesLeft == 0) {
nnAssert(info.buffer != nullptr);
delete[] info.buffer;
info.buffer = nullptr;
}
}
}
int CpuExecutor::executeOperation(const Operation& operation) {
LOG(DEBUG) << "CpuExecutor::executeOperation(" << toString(operation) << ")";
const auto& ins = operation.inputs;
const auto& outs = operation.outputs;
bool success = false;
// Function to verify that the number of input and output parameters
// matches what is expected.
auto parameterCountIs = [&ins, &outs, &operation](size_t expectedIns,
size_t expectedOuts) -> bool {
if (ins.size() != expectedIns || outs.size() != expectedOuts) {
LOG(ERROR) << getOperationName(operation.opTuple.operationType)
<< ": Invalid number of ins "
<< ins.size() << " / " << expectedIns
<< " and outs " << outs.size() << " / "
<< expectedOuts;
return false;
}
return true;
};
switch (operation.opTuple.operationType) {
case OperationType::ADD: {
if (!parameterCountIs(2, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& in1 = mOperands[ins[0]];
const RunTimeOperandInfo& in2 = mOperands[ins[1]];
RunTimeOperandInfo& out = mOperands[outs[0]];
Shape outShape = out.shape();
if (operation.opTuple.operandType == OperandType::TENSOR_FLOAT32) {
success = addTensorsPrepare(in1.shape(), in2.shape(), &outShape) &&
allocateIfNeeded(&out, outShape) &&
addTensorsFloat32(reinterpret_cast<const float*>(in1.buffer),
reinterpret_cast<const float*>(in2.buffer),
reinterpret_cast<float*>(out.buffer),
outShape);
}
} break;
case OperationType::DEPTHWISE_CONV: {
if (!parameterCountIs(8, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = mOperands[ins[0]];
const RunTimeOperandInfo& filter = mOperands[ins[1]];
const RunTimeOperandInfo& bias = mOperands[ins[2]];
int32_t padding = getInt32ScalarData(mOperands[ins[3]]);
int32_t stride_width = getInt32ScalarData(mOperands[ins[4]]);
int32_t stride_height = getInt32ScalarData(mOperands[ins[5]]);
int32_t depth_multiplier = getInt32ScalarData(mOperands[ins[6]]);
int32_t activation = getInt32ScalarData(mOperands[ins[7]]);
RunTimeOperandInfo& output = mOperands[outs[0]];
Shape outShape = output.shape();
if (operation.opTuple.operandType == OperandType::TENSOR_FLOAT32) {
success = depthwiseConvPrepare(input.shape(), filter.shape(), bias.shape(),
padding, stride_width, stride_height,
&outShape) &&
allocateIfNeeded(&output, outShape) &&
depthwiseConvFloat32(reinterpret_cast<const float*>(input.buffer),
input.shape(),
reinterpret_cast<const float*>(filter.buffer),
filter.shape(),
reinterpret_cast<const float*>(bias.buffer),
bias.shape(),
padding, stride_width, stride_height,
depth_multiplier, activation,
reinterpret_cast<float*>(output.buffer),
outShape);
} else if (operation.opTuple.operandType == OperandType::TENSOR_QUANT8_ASYMM) {
success = depthwiseConvPrepare(input.shape(), filter.shape(), bias.shape(),
padding, stride_width, stride_height,
&outShape) &&
allocateIfNeeded(&output, outShape) &&
depthwiseConvQuant8(reinterpret_cast<const uint8_t*>(input.buffer),
input.shape(),
reinterpret_cast<const uint8_t*>(filter.buffer),
filter.shape(),
reinterpret_cast<const int32_t*>(bias.buffer),
bias.shape(),
padding, stride_width, stride_height,
depth_multiplier, activation,
reinterpret_cast<uint8_t*>(output.buffer),
outShape);
}
} break;
case OperationType::CONV: {
if (!parameterCountIs(7, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = mOperands[ins[0]];
const RunTimeOperandInfo& filter = mOperands[ins[1]];
const RunTimeOperandInfo& bias = mOperands[ins[2]];
int32_t padding = getInt32ScalarData(mOperands[ins[3]]);
int32_t stride_width = getInt32ScalarData(mOperands[ins[4]]);
int32_t stride_height = getInt32ScalarData(mOperands[ins[5]]);
int32_t activation = getInt32ScalarData(mOperands[ins[6]]);
RunTimeOperandInfo& output = mOperands[outs[0]];
Shape outShape = output.shape();
if (operation.opTuple.operandType == OperandType::TENSOR_FLOAT32) {
success = convPrepare(input.shape(), filter.shape(), bias.shape(),
padding, stride_width, stride_height,
&outShape) &&
allocateIfNeeded(&output, outShape) &&
convFloat32(reinterpret_cast<const float*>(input.buffer), input.shape(),
reinterpret_cast<const float*>(filter.buffer), filter.shape(),
reinterpret_cast<const float*>(bias.buffer), bias.shape(),
padding, stride_width, stride_height, activation,
reinterpret_cast<float*>(output.buffer), outShape);
} else if (operation.opTuple.operandType == OperandType::TENSOR_QUANT8_ASYMM) {
success = convPrepare(input.shape(), filter.shape(), bias.shape(),
padding, stride_width, stride_height,
&outShape) &&
allocateIfNeeded(&output, outShape) &&
convQuant8(reinterpret_cast<const uint8_t*>(input.buffer),
input.shape(),
reinterpret_cast<const uint8_t*>(filter.buffer),
filter.shape(),
reinterpret_cast<const int32_t*>(bias.buffer),
bias.shape(),
padding, stride_width, stride_height, activation,
reinterpret_cast<uint8_t*>(output.buffer),
outShape);
}
} break;
case OperationType::AVERAGE_POOL: {
if (!parameterCountIs(7, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = mOperands[ins[0]];
int32_t padding = getInt32ScalarData(mOperands[ins[1]]);
int32_t stride_width = getInt32ScalarData(mOperands[ins[2]]);
int32_t stride_height = getInt32ScalarData(mOperands[ins[3]]);
int32_t filter_width = getInt32ScalarData(mOperands[ins[4]]);
int32_t filter_height = getInt32ScalarData(mOperands[ins[5]]);
int32_t activation = getInt32ScalarData(mOperands[ins[6]]);
RunTimeOperandInfo& output = mOperands[outs[0]];
Shape outShape = output.shape();
if (operation.opTuple.operandType == OperandType::TENSOR_FLOAT32) {
success = genericPoolingPrepare(input.shape(),
padding, stride_width, stride_height,
filter_width, filter_height,
&outShape) &&
allocateIfNeeded(&output, outShape) &&
averagePoolFloat32(reinterpret_cast<const float*>(input.buffer),
input.shape(),
padding, stride_width, stride_height,
filter_width, filter_height, activation,
reinterpret_cast<float*>(output.buffer),
outShape);
} else if (operation.opTuple.operandType == OperandType::TENSOR_QUANT8_ASYMM) {
success = genericPoolingPrepare(input.shape(),
padding, stride_width, stride_height,
filter_width, filter_height,
&outShape) &&
allocateIfNeeded(&output, outShape) &&
averagePoolQuant8(reinterpret_cast<const uint8_t*>(input.buffer),
input.shape(),
padding, stride_width, stride_height,
filter_width, filter_height, activation,
reinterpret_cast<uint8_t*>(output.buffer),
outShape);
}
} break;
case OperationType::L2_POOL: {
if (!parameterCountIs(7, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = mOperands[ins[0]];
int32_t padding = getInt32ScalarData(mOperands[ins[1]]);
int32_t stride_width = getInt32ScalarData(mOperands[ins[2]]);
int32_t stride_height = getInt32ScalarData(mOperands[ins[3]]);
int32_t filter_width = getInt32ScalarData(mOperands[ins[4]]);
int32_t filter_height = getInt32ScalarData(mOperands[ins[5]]);
int32_t activation = getInt32ScalarData(mOperands[ins[6]]);
RunTimeOperandInfo& output = mOperands[outs[0]];
Shape outShape = output.shape();
if (operation.opTuple.operandType == OperandType::TENSOR_FLOAT32) {
success = genericPoolingPrepare(input.shape(),
padding, stride_width, stride_height,
filter_width, filter_height,
&outShape) &&
allocateIfNeeded(&output, outShape) &&
l2PoolFloat32(reinterpret_cast<const float*>(input.buffer),
input.shape(),
padding, stride_width, stride_height,
filter_width, filter_height, activation,
reinterpret_cast<float*>(output.buffer),
outShape);
}
} break;
case OperationType::MAX_POOL: {
if (!parameterCountIs(7, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = mOperands[ins[0]];
int32_t padding = getInt32ScalarData(mOperands[ins[1]]);
int32_t stride_width = getInt32ScalarData(mOperands[ins[2]]);
int32_t stride_height = getInt32ScalarData(mOperands[ins[3]]);
int32_t filter_width = getInt32ScalarData(mOperands[ins[4]]);
int32_t filter_height = getInt32ScalarData(mOperands[ins[5]]);
int32_t activation = getInt32ScalarData(mOperands[ins[6]]);
RunTimeOperandInfo& output = mOperands[outs[0]];
Shape outShape = output.shape();
if (operation.opTuple.operandType == OperandType::TENSOR_FLOAT32) {
success = genericPoolingPrepare(input.shape(),
padding, stride_width, stride_height,
filter_width, filter_height,
&outShape) &&
allocateIfNeeded(&output, outShape) &&
maxPoolFloat32(reinterpret_cast<const float*>(input.buffer),
input.shape(),
padding, stride_width, stride_height,
filter_width, filter_height, activation,
reinterpret_cast<float*>(output.buffer),
outShape);
} else if (operation.opTuple.operandType == OperandType::TENSOR_QUANT8_ASYMM) {
success = genericPoolingPrepare(input.shape(),
padding, stride_width, stride_height,
filter_width, filter_height,
&outShape) &&
allocateIfNeeded(&output, outShape) &&
maxPoolQuant8(reinterpret_cast<const uint8_t*>(input.buffer),
input.shape(),
padding, stride_width, stride_height,
filter_width, filter_height, activation,
reinterpret_cast<uint8_t*>(output.buffer),
outShape);
}
} break;
case OperationType::RELU: {
if (!parameterCountIs(1, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = mOperands[ins[0]];
RunTimeOperandInfo& output = mOperands[outs[0]];
Shape outShape = output.shape();
if (operation.opTuple.operandType == OperandType::TENSOR_FLOAT32) {
success = genericActivationPrepare(input.shape(), &outShape) &&
allocateIfNeeded(&output, outShape) &&
reluFloat32(reinterpret_cast<const float*>(input.buffer),
input.shape(),
reinterpret_cast<float*>(output.buffer),
outShape);
}
} break;
case OperationType::RELU6: {
if (!parameterCountIs(1, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = mOperands[ins[0]];
RunTimeOperandInfo& output = mOperands[outs[0]];
Shape outShape = output.shape();
if (operation.opTuple.operandType == OperandType::TENSOR_FLOAT32) {
success = genericActivationPrepare(input.shape(), &outShape) &&
allocateIfNeeded(&output, outShape) &&
relu6Float32(reinterpret_cast<const float*>(input.buffer),
input.shape(),
reinterpret_cast<float*>(output.buffer),
outShape);
}
} break;
case OperationType::TANH: {
if (!parameterCountIs(1, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = mOperands[ins[0]];
RunTimeOperandInfo& output = mOperands[outs[0]];
Shape outShape = output.shape();
if (operation.opTuple.operandType == OperandType::TENSOR_FLOAT32) {
success = genericActivationPrepare(input.shape(), &outShape) &&
allocateIfNeeded(&output, outShape) &&
tanhFloat32(reinterpret_cast<const float*>(input.buffer),
input.shape(),
reinterpret_cast<float*>(output.buffer),
outShape);
}
} break;
case OperationType::LOGISTIC: {
if (!parameterCountIs(1, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = mOperands[ins[0]];
RunTimeOperandInfo& output = mOperands[outs[0]];
Shape outShape = output.shape();
if (operation.opTuple.operandType == OperandType::TENSOR_FLOAT32) {
success = genericActivationPrepare(input.shape(), &outShape) &&
allocateIfNeeded(&output, outShape) &&
logisticFloat32(reinterpret_cast<const float*>(input.buffer),
input.shape(),
reinterpret_cast<float*>(output.buffer),
outShape);
} else if (operation.opTuple.operandType == OperandType::TENSOR_QUANT8_ASYMM) {
success = genericActivationPrepare(input.shape(), &outShape) &&
allocateIfNeeded(&output, outShape) &&
logisticQuant8(reinterpret_cast<const uint8_t*>(input.buffer),
input.shape(),
reinterpret_cast<uint8_t*>(output.buffer),
outShape);
}
} break;
default:
nnAssert(false);
break;
}
if (!success) {
LOG(ERROR) << getOperationName(operation.opTuple.operationType) << " failed.";
return ANEURALNETWORKS_OP_FAILED;
}
freeNoLongerUsedOperands(ins);
return ANEURALNETWORKS_NO_ERROR;
}
} // namespace nn
} // namespace android