blob: 39785cbe2c87a143dc1ab73689237499526f82d7 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include "BidirectionalSequenceLSTM.h"
#include "OperationsValidationUtils.h"
namespace android::nn {
namespace bidirectional_sequence_lstm {
Result<Version> validate(const IOperationValidationContext* context) {
const uint32_t kNumOutputs = 2;
const uint32_t kNumOutputsMerged = 1;
const uint32_t kNumOutputsWithState = 6;
const uint32_t kNumOutputsMergedWithState = 5;
NN_RET_CHECK(context->getNumInputs() == 61 &&
(context->getNumOutputs() == kNumOutputs ||
context->getNumOutputs() == kNumOutputsMerged ||
context->getNumOutputs() == kNumOutputsWithState ||
context->getNumOutputs() == kNumOutputsMergedWithState))
<< "Invalid number of input operands (" << context->getNumInputs()
<< ", expected 61) or output operands (" << context->getNumOutputs()
<< ", expected 1, 2, 5 or 6) for operation " << context->getOperationName();
std::vector<OperandType> inExpectedTypes;
auto inputType = context->getInputType(0);
NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT32 ||
inputType == OperandType::TENSOR_FLOAT16)
<< "Unsupported input tensor type for operation " << context->getOperationName();
inExpectedTypes = {};
for (int i = 0; i < 48; ++i) {
inExpectedTypes.push_back(inputType);
}
inExpectedTypes.push_back(OperandType::INT32);
inExpectedTypes.push_back(inputType == OperandType::TENSOR_FLOAT32 ? OperandType::FLOAT32
: OperandType::FLOAT16);
inExpectedTypes.push_back(inputType == OperandType::TENSOR_FLOAT32 ? OperandType::FLOAT32
: OperandType::FLOAT16);
inExpectedTypes.push_back(OperandType::BOOL);
inExpectedTypes.push_back(OperandType::BOOL);
for (int i = 0; i < 8; ++i) {
inExpectedTypes.push_back(inputType);
}
Version version = kVersionFeatureLevel3;
if (context->getNumOutputs() == kNumOutputsWithState ||
context->getNumOutputs() == kNumOutputsMergedWithState) {
version = kVersionFeatureLevel4;
}
std::vector<OperandType> outExpectedTypes(context->getNumOutputs(), inputType);
NN_TRY(context->validateOperationOperandTypes(inExpectedTypes, outExpectedTypes));
return version;
}
} // namespace bidirectional_sequence_lstm
NN_DEFINE_VALIDATION_FUNCTION(BIDIRECTIONAL_SEQUENCE_LSTM, bidirectional_sequence_lstm::validate);
} // namespace android::nn