| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "Operations" |
| |
| #include "Conv2D.h" |
| |
| #include <algorithm> |
| #include <iterator> |
| #include <memory> |
| #include <vector> |
| |
| #include "LegacyUtils.h" |
| #include "OperationResolver.h" |
| #include "Operations.h" |
| #include "OperationsExecutionUtils.h" |
| #include "Tracing.h" |
| |
| #ifdef NN_INCLUDE_CPU_IMPLEMENTATION |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wunused-parameter" |
| #pragma clang diagnostic ignored "-Wsign-compare" |
| #pragma clang diagnostic ignored "-Winvalid-partial-specialization" |
| #include <tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h> |
| #include <tensorflow/lite/kernels/internal/reference/integer_ops/conv.h> |
| #include <tensorflow/lite/kernels/internal/types.h> |
| #pragma clang diagnostic pop |
| |
| #include "CpuOperationUtils.h" |
| #endif // NN_INCLUDE_CPU_IMPLEMENTATION |
| |
| namespace android { |
| namespace nn { |
| namespace conv_2d { |
| |
| #ifdef NN_INCLUDE_CPU_IMPLEMENTATION |
| namespace { |
| |
| // If possible we will use this static buffer for the tensor. |
| constexpr size_t kStaticBufferSize = 1605632; |
| [[maybe_unused]] char static_scratch_buffer[kStaticBufferSize]; |
| |
| // executionMutex is used to protect concurrent access of the static_scratch_buffer |
| // and other non-threadsafe resources like gemmlowp::GemmContext. |
| // std::mutex is safe for pthreads on Android. |
| std::mutex executionMutex; |
| |
| struct Conv2dParam { |
| int32_t padding_left, padding_right; |
| int32_t padding_top, padding_bottom; |
| int32_t stride_width, stride_height; |
| int32_t dilation_width_factor = 1, dilation_height_factor = 1; |
| int32_t activation; |
| bool useNchw = false; |
| |
| bool initialize(const IOperationExecutionContext* context) { |
| uint32_t inCount = context->getNumInputs(); |
| int32_t padding_implicit = 0; |
| bool useImplicitPadding = false; |
| if ((inCount >= 8 && context->getInputType(7) == OperandType::BOOL) || inCount == 7) { |
| padding_implicit = context->getInputValue<int32_t>(3); |
| stride_width = context->getInputValue<int32_t>(4); |
| stride_height = context->getInputValue<int32_t>(5); |
| activation = context->getInputValue<int32_t>(6); |
| if (inCount >= 8) { |
| useNchw = context->getInputValue<bool>(7); |
| } |
| if (inCount == 10) { |
| dilation_width_factor = context->getInputValue<int32_t>(8); |
| dilation_height_factor = context->getInputValue<int32_t>(9); |
| } |
| useImplicitPadding = true; |
| } else if (inCount >= 10 && context->getInputType(7) == OperandType::INT32) { |
| padding_left = context->getInputValue<int32_t>(3); |
| padding_right = context->getInputValue<int32_t>(4); |
| padding_top = context->getInputValue<int32_t>(5); |
| padding_bottom = context->getInputValue<int32_t>(6); |
| stride_width = context->getInputValue<int32_t>(7); |
| stride_height = context->getInputValue<int32_t>(8); |
| activation = context->getInputValue<int32_t>(9); |
| if (inCount >= 11) { |
| useNchw = context->getInputValue<bool>(10); |
| } |
| if (inCount == 13) { |
| dilation_width_factor = context->getInputValue<int32_t>(11); |
| dilation_height_factor = context->getInputValue<int32_t>(12); |
| } |
| } else { |
| NN_RET_CHECK_FAIL() << "Unsupported input spec for operation " << kOperationName; |
| } |
| if (useImplicitPadding) { |
| Shape inputShape = context->getInputShape(kInputTensor); |
| Shape filterShape = context->getInputShape(kFilterTensor); |
| int32_t input_width = getSizeOfDimension(inputShape, useNchw ? 3 : 2); |
| int32_t input_height = getSizeOfDimension(inputShape, useNchw ? 2 : 1); |
| int32_t filter_width = getSizeOfDimension(filterShape, 2); |
| int32_t filter_height = getSizeOfDimension(filterShape, 1); |
| calculateExplicitPadding(input_width, stride_width, dilation_width_factor, filter_width, |
| padding_implicit, &padding_left, &padding_right); |
| calculateExplicitPadding(input_height, stride_height, dilation_height_factor, |
| filter_height, padding_implicit, &padding_top, |
| &padding_bottom); |
| } |
| NN_RET_CHECK_GE(padding_left, 0); |
| NN_RET_CHECK_GE(padding_right, 0); |
| NN_RET_CHECK_GE(padding_top, 0); |
| NN_RET_CHECK_GE(padding_bottom, 0); |
| NN_RET_CHECK_GT(stride_width, 0); |
| NN_RET_CHECK_GT(stride_height, 0); |
| NN_RET_CHECK_GT(dilation_width_factor, 0); |
| NN_RET_CHECK_GT(dilation_height_factor, 0); |
| NN_RET_CHECK_GE(activation, 0); |
| return true; |
| } |
| }; |
| |
| #define ANDROID_NN_CONV_PARAMETERS(Type) \ |
| [[maybe_unused]] uint32_t height = getSizeOfDimension(inputShape, 1); \ |
| [[maybe_unused]] uint32_t width = getSizeOfDimension(inputShape, 2); \ |
| uint32_t filterHeight = getSizeOfDimension(filterShape, 1); \ |
| uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \ |
| [[maybe_unused]] uint32_t outHeight = getSizeOfDimension(outputShape, 1); \ |
| [[maybe_unused]] uint32_t outWidth = getSizeOfDimension(outputShape, 2); \ |
| uint32_t inDepth = getSizeOfDimension(inputShape, 3); \ |
| \ |
| uint32_t paddingHeight = (uint32_t)padding_top; \ |
| uint32_t paddingWidth = (uint32_t)padding_left; \ |
| \ |
| tflite::Dims<4> im2colDim; \ |
| im2colDim.sizes[3] = (int)getSizeOfDimension(outputShape, 0); \ |
| im2colDim.sizes[2] = (int)getSizeOfDimension(outputShape, 1); \ |
| im2colDim.sizes[1] = (int)getSizeOfDimension(outputShape, 2); \ |
| im2colDim.sizes[0] = (int)inDepth * filterHeight * filterWidth; \ |
| \ |
| im2colDim.strides[0] = 1; \ |
| for (int i = 1; i < 4; i++) { \ |
| im2colDim.strides[i] = im2colDim.strides[i - 1] * im2colDim.sizes[i - 1]; \ |
| } \ |
| \ |
| Type* im2colData = nullptr; \ |
| uint64_t im2colByteSize = sizeof(Type); \ |
| std::unique_ptr<Type[]> im2colGuard; \ |
| for (int i = 0; i < 4; i++) { \ |
| im2colByteSize *= im2colDim.sizes[i]; \ |
| } \ |
| /* http://b/77982879, tflite::optimized_ops::Conv uses int for offsets */ \ |
| if (im2colByteSize >= 0x7fffffff) { \ |
| LOG(ERROR) << "Conv size is too large, not enough memory"; \ |
| return false; \ |
| } \ |
| if (im2colByteSize <= kStaticBufferSize) { \ |
| im2colData = reinterpret_cast<Type*>(static_scratch_buffer); \ |
| } else { \ |
| im2colData = new (std::nothrow) Type[im2colByteSize / sizeof(Type)]; \ |
| if (im2colData == nullptr) { \ |
| LOG(ERROR) << "Conv size is too large, not enough memory"; \ |
| return false; \ |
| } \ |
| im2colGuard.reset(im2colData); \ |
| } |
| |
| bool needim2colData(const Shape& filterShape, int32_t stride_width, int32_t stride_height, |
| int32_t dilation_width_factor, int32_t dilation_height_factor) { |
| // Within tflite::optimized_ops::Conv, the following tests are performed, |
| // and in the case (!need_dilated_im2col && !need_im2col), then the |
| // method doesn't expect to receive outputData. In debug mode this is |
| // asserted and fails tests, so we need to perform this check as the caller |
| // also. See: |
| // tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h:2655 |
| const int filter_width = getSizeOfDimension(filterShape, 2); |
| const int filter_height = getSizeOfDimension(filterShape, 1); |
| const bool need_dilated_im2col = dilation_width_factor != 1 || dilation_height_factor != 1; |
| const bool need_im2col = |
| stride_width != 1 || stride_height != 1 || filter_width != 1 || filter_height != 1; |
| return need_dilated_im2col || need_im2col; |
| } |
| |
| bool convNhwc(const float* inputData, const Shape& inputShape, const float* filterData, |
| const Shape& filterShape, const float* biasData, const Shape& biasShape, |
| int32_t padding_left, int32_t /*padding_right*/, int32_t padding_top, |
| int32_t /*padding_bottom*/, int32_t stride_width, int32_t stride_height, |
| int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation, |
| float* outputData, const Shape& outputShape) { |
| NNTRACE_TRANS("convFloat32"); |
| |
| ANDROID_NN_CONV_PARAMETERS(float) |
| |
| float output_activation_min, output_activation_max; |
| CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max); |
| |
| // Prevent concurrent executions that may access the scratch buffer. |
| std::unique_lock<std::mutex> lock(executionMutex); |
| NNTRACE_COMP_SWITCH("optimized_ops::Conv"); |
| |
| const bool need_im2colData = needim2colData(filterShape, stride_width, stride_height, |
| dilation_width_factor, dilation_height_factor); |
| |
| tflite::optimized_ops::Conv( |
| inputData, convertShapeToDims(inputShape), filterData, convertShapeToDims(filterShape), |
| biasData, convertShapeToDims(biasShape), stride_width, stride_height, |
| dilation_width_factor, dilation_height_factor, paddingWidth, paddingHeight, |
| output_activation_min, output_activation_max, outputData, |
| convertShapeToDims(outputShape), need_im2colData ? im2colData : nullptr, im2colDim); |
| return true; |
| } |
| |
| bool convNhwc(const uint8_t* inputData, const Shape& inputShape, const uint8_t* filterData, |
| const Shape& filterShape, const int32_t* biasData, const Shape& biasShape, |
| int32_t padding_left, int32_t /*padding_right*/, int32_t padding_top, |
| int32_t /*padding_bottom*/, int32_t stride_width, int32_t stride_height, |
| int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation, |
| uint8_t* outputData, const Shape& outputShape) { |
| NNTRACE_TRANS("convQuant8"); |
| |
| ANDROID_NN_CONV_PARAMETERS(uint8_t) |
| |
| int32_t inputOffset = -inputShape.offset; |
| int32_t filterOffset = -filterShape.offset; |
| int32_t outputOffset = outputShape.offset; |
| |
| double real_multiplier = 0.0; |
| int32_t output_multiplier = 0; |
| int32_t output_shift = 0; |
| int32_t output_activation_min = 0; |
| int32_t output_activation_max = 0; |
| |
| NN_RET_CHECK(GetQuantizedConvolutionMultiplier(inputShape, filterShape, biasShape, outputShape, |
| &real_multiplier)); |
| int exponent; |
| NN_RET_CHECK(QuantizeMultiplier(real_multiplier, &output_multiplier, &exponent)); |
| output_shift = -exponent; |
| CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, |
| &output_activation_max); |
| |
| static gemmlowp::GemmContext gemm_context; |
| |
| // Prevent concurrent executions that may access the scratch buffer and |
| // gemm_context. |
| std::unique_lock<std::mutex> lock(executionMutex); |
| // Alow gemmlowp automatically decide how many threads to use. |
| gemm_context.set_max_num_threads(0); |
| |
| NNTRACE_COMP_SWITCH("optimized_ops::Conv"); |
| |
| const bool need_im2colData = needim2colData(filterShape, stride_width, stride_height, |
| dilation_width_factor, dilation_height_factor); |
| |
| tflite::optimized_ops::Conv(inputData, convertShapeToDims(inputShape), inputOffset, filterData, |
| convertShapeToDims(filterShape), filterOffset, biasData, |
| convertShapeToDims(biasShape), stride_width, stride_height, |
| dilation_width_factor, dilation_height_factor, paddingWidth, |
| paddingHeight, outputOffset, output_multiplier, output_shift, |
| output_activation_min, output_activation_max, outputData, |
| convertShapeToDims(outputShape), |
| need_im2colData ? im2colData : nullptr, im2colDim, &gemm_context); |
| return true; |
| } |
| |
| // Passing input, filter and output shapes by value, so that we can change the |
| // offsets without modifying the actual shapes. |
| bool convNhwc(const int8_t* inputData, Shape inputShape, const int8_t* filterData, |
| Shape filterShape, const int32_t* biasData, const Shape& biasShape, |
| int32_t padding_left, int32_t padding_right, int32_t padding_top, |
| int32_t padding_bottom, int32_t stride_width, int32_t stride_height, |
| int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation, |
| int8_t* outputData, Shape outputShape) { |
| NNTRACE_TRANS("convQuant8"); |
| |
| std::vector<uint8_t> unsignedInput(getNumberOfElements(inputShape)); |
| convertInt8ToUInt8(inputData, &unsignedInput); |
| inputShape.offset += 128; |
| |
| std::vector<uint8_t> unsignedFilter(getNumberOfElements(filterShape)); |
| convertInt8ToUInt8(filterData, &unsignedFilter); |
| filterShape.offset += 128; |
| |
| std::vector<uint8_t> unsignedOutput(getNumberOfElements(outputShape)); |
| outputShape.offset += 128; |
| |
| NN_RET_CHECK(convNhwc(unsignedInput.data(), inputShape, unsignedFilter.data(), filterShape, |
| biasData, biasShape, padding_left, padding_right, padding_top, |
| padding_bottom, stride_width, stride_height, dilation_width_factor, |
| dilation_height_factor, activation, unsignedOutput.data(), outputShape)); |
| |
| convertUInt8ToInt8(unsignedOutput, outputData); |
| |
| return true; |
| } |
| |
| bool convNhwc(const _Float16* inputData, const Shape& inputShape, const _Float16* filterData, |
| const Shape& filterShape, const _Float16* biasData, const Shape& biasShape, |
| int32_t padding_left, int32_t padding_right, int32_t padding_top, |
| int32_t padding_bottom, int32_t stride_width, int32_t stride_height, |
| int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation, |
| _Float16* outputData, const Shape& outputShape) { |
| NNTRACE_TRANS("convFloat16"); |
| |
| std::vector<float> inputData_float32(getNumberOfElements(inputShape)); |
| std::vector<float> filterData_float32(getNumberOfElements(filterShape)); |
| std::vector<float> biasData_float32(getNumberOfElements(biasShape)); |
| std::vector<float> outputData_float32(getNumberOfElements(outputShape)); |
| |
| convertFloat16ToFloat32(inputData, &inputData_float32); |
| convertFloat16ToFloat32(filterData, &filterData_float32); |
| convertFloat16ToFloat32(biasData, &biasData_float32); |
| |
| convNhwc(inputData_float32.data(), inputShape, filterData_float32.data(), filterShape, |
| biasData_float32.data(), biasShape, padding_left, padding_right, padding_top, |
| padding_bottom, stride_width, stride_height, dilation_width_factor, |
| dilation_height_factor, activation, outputData_float32.data(), outputShape); |
| convertFloat32ToFloat16(outputData_float32, outputData); |
| |
| return true; |
| } |
| |
| template <typename T_Input, typename T_Filter, typename T_Bias> |
| bool conv(const T_Input* inputData, const Shape& inputShape, const T_Filter* filterData, |
| const Shape& filterShape, const T_Bias* biasData, const Shape& biasShape, |
| int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, |
| int32_t stride_width, int32_t stride_height, int32_t dilation_width_factor, |
| int32_t dilation_height_factor, int32_t activation, bool useNchw, T_Input* outputData, |
| const Shape& outputShape) { |
| InputWithLayout<T_Input> input(useNchw); |
| OutputWithLayout<T_Input> output(useNchw); |
| NN_RET_CHECK(input.initialize(inputData, inputShape)); |
| NN_RET_CHECK(output.initialize(outputData, outputShape)); |
| NN_RET_CHECK(convNhwc(input.getNhwcBuffer(), input.getNhwcShape(), filterData, filterShape, |
| biasData, biasShape, padding_left, padding_right, padding_top, |
| padding_bottom, stride_width, stride_height, dilation_width_factor, |
| dilation_height_factor, activation, output.getNhwcBuffer(), |
| output.getNhwcShape())); |
| NN_RET_CHECK(output.commit()); |
| return true; |
| } |
| |
| bool convQuant8PerChannelNhwc(const uint8_t* inputData, const Shape& inputShape, |
| const int8_t* filterData, const Shape& filterShape, |
| const float* filterScales, const int32_t* biasData, |
| const Shape& biasShape, int32_t paddingLeft, int32_t /*paddingRight*/, |
| int32_t paddingTop, int32_t /*paddingBottom*/, int32_t strideWidth, |
| int32_t strideHeight, int32_t dilationWidthFactor, |
| int32_t dilationHeightFactor, int32_t activation, uint8_t* outputData, |
| const Shape& outputShape) { |
| NNTRACE_TRANS("convQuant8PerChannel"); |
| |
| uint32_t numBatches = getSizeOfDimension(inputShape, 0); |
| uint32_t inputHeight = getSizeOfDimension(inputShape, 1); |
| uint32_t inputWidth = getSizeOfDimension(inputShape, 2); |
| uint32_t inputDepth = getSizeOfDimension(inputShape, 3); |
| uint32_t filterHeight = getSizeOfDimension(filterShape, 1); |
| uint32_t filterWidth = getSizeOfDimension(filterShape, 2); |
| uint32_t filterDepth = getSizeOfDimension(filterShape, 3); |
| uint32_t outputHeight = getSizeOfDimension(outputShape, 1); |
| uint32_t outputWidth = getSizeOfDimension(outputShape, 2); |
| uint32_t outputDepth = getSizeOfDimension(outputShape, 3); |
| |
| int32_t inputOffset = -inputShape.offset; |
| int32_t outputOffset = outputShape.offset; |
| |
| auto realMultiplier = std::vector<double>(outputDepth, .0f); |
| auto outputMultiplier = std::vector<int32_t>(outputDepth, 0); |
| auto outputShift = std::vector<int32_t>(outputDepth, .0f); |
| |
| for (uint32_t i = 0; i < outputDepth; ++i) { |
| Shape filterChannelShape = filterShape; |
| filterChannelShape.scale = filterScales[i]; |
| Shape biasChannelShape = biasShape; |
| biasChannelShape.scale = filterScales[i] * inputShape.scale; |
| NN_RET_CHECK(GetQuantizedConvolutionMultiplier( |
| inputShape, filterChannelShape, biasChannelShape, outputShape, &realMultiplier[i])); |
| int exponent; |
| NN_RET_CHECK(QuantizeMultiplier(realMultiplier[i], &outputMultiplier[i], &exponent)); |
| outputShift[i] = -exponent; |
| } |
| |
| int32_t output_activation_min = 0, output_activation_max = 0; |
| CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, |
| &output_activation_max); |
| const uint8_t* inputBase = inputData; |
| uint8_t* outPtr = outputData; |
| for (uint32_t b = 0; b < numBatches; b++) { |
| for (uint32_t h = 0; h < outputHeight; h++) { |
| for (uint32_t w = 0; w < outputWidth; w++) { |
| const int8_t* filterBase = filterData; |
| |
| for (uint32_t d = 0; d < outputDepth; d++) { |
| int32_t wInputOrigin = static_cast<int32_t>(w) * strideWidth - paddingLeft; |
| int32_t hInputOrigin = static_cast<int32_t>(h) * strideHeight - paddingTop; |
| int32_t sum = 0.0f; |
| |
| for (uint32_t i = 0; i < filterHeight; i++) { |
| for (uint32_t j = 0; j < filterWidth; j++) { |
| for (uint32_t k = 0; k < filterDepth; k++) { |
| int32_t hInput = hInputOrigin + |
| dilationHeightFactor * static_cast<int32_t>(i); |
| int32_t wInput = wInputOrigin + |
| dilationWidthFactor * static_cast<int32_t>(j); |
| uint32_t dInput = k; |
| if (hInput >= 0 && hInput < static_cast<int32_t>(inputHeight) && |
| wInput >= 0 && wInput < static_cast<int32_t>(inputWidth)) { |
| uint32_t filterIndex = |
| i * filterWidth * filterDepth + j * filterDepth + k; |
| uint32_t inputIndex = hInput * inputWidth * inputDepth + |
| wInput * inputDepth + dInput; |
| sum += (static_cast<int32_t>(filterBase[filterIndex])) * |
| (static_cast<int32_t>(inputBase[inputIndex]) + |
| inputOffset); |
| } |
| } |
| } |
| } |
| sum += biasData[d]; |
| sum = tflite::MultiplyByQuantizedMultiplier(sum, outputMultiplier[d], |
| -outputShift[d]); |
| sum += outputOffset; |
| sum = std::max(std::min(sum, output_activation_max), output_activation_min); |
| outPtr[d] = static_cast<uint8_t>(sum); |
| filterBase += filterHeight * filterWidth * filterDepth; |
| } |
| outPtr += outputDepth; |
| } |
| } |
| inputBase += inputHeight * inputWidth * inputDepth; |
| } |
| |
| return true; |
| } |
| |
| bool convQuant8PerChannelNhwc(const int8_t* inputData, const Shape& inputShape, |
| const int8_t* filterData, const Shape& filterShape, |
| const float* filterScales, const int32_t* biasData, |
| const Shape& biasShape, int32_t paddingLeft, int32_t /*paddingRight*/, |
| int32_t paddingTop, int32_t /*paddingBottom*/, int32_t strideWidth, |
| int32_t strideHeight, int32_t dilationWidthFactor, |
| int32_t dilationHeightFactor, int32_t activation, int8_t* outputData, |
| const Shape& outputShape) { |
| NNTRACE_TRANS("convQuant8SignedPerChannel"); |
| |
| [[maybe_unused]] uint32_t numBatches = getSizeOfDimension(inputShape, 0); |
| [[maybe_unused]] uint32_t inputHeight = getSizeOfDimension(inputShape, 1); |
| [[maybe_unused]] uint32_t inputWidth = getSizeOfDimension(inputShape, 2); |
| [[maybe_unused]] uint32_t inputDepth = getSizeOfDimension(inputShape, 3); |
| [[maybe_unused]] uint32_t filterHeight = getSizeOfDimension(filterShape, 1); |
| [[maybe_unused]] uint32_t filterWidth = getSizeOfDimension(filterShape, 2); |
| [[maybe_unused]] uint32_t filterDepth = getSizeOfDimension(filterShape, 3); |
| [[maybe_unused]] uint32_t outputHeight = getSizeOfDimension(outputShape, 1); |
| [[maybe_unused]] uint32_t outputWidth = getSizeOfDimension(outputShape, 2); |
| uint32_t outputDepth = getSizeOfDimension(outputShape, 3); |
| |
| [[maybe_unused]] int32_t inputOffset = -inputShape.offset; |
| [[maybe_unused]] int32_t outputOffset = outputShape.offset; |
| |
| auto realMultiplier = std::vector<double>(outputDepth, .0f); |
| auto outputMultiplier = std::vector<int32_t>(outputDepth, 0); |
| auto outputShift = std::vector<int32_t>(outputDepth, .0f); |
| |
| for (uint32_t i = 0; i < outputDepth; ++i) { |
| Shape filterChannelShape = filterShape; |
| filterChannelShape.scale = filterScales[i]; |
| Shape biasChannelShape = biasShape; |
| biasChannelShape.scale = filterScales[i] * inputShape.scale; |
| NN_RET_CHECK(GetQuantizedConvolutionMultiplier( |
| inputShape, filterChannelShape, biasChannelShape, outputShape, &realMultiplier[i])); |
| NN_RET_CHECK(QuantizeMultiplier(realMultiplier[i], &outputMultiplier[i], &outputShift[i])); |
| } |
| |
| int32_t output_activation_min = 0, output_activation_max = 0; |
| CalculateActivationRangeInt8(activation, outputShape, &output_activation_min, |
| &output_activation_max); |
| |
| tflite::ConvParams convParams; |
| convParams.input_offset = -inputShape.offset; |
| convParams.output_offset = outputShape.offset; |
| convParams.stride_height = strideHeight; |
| convParams.stride_width = strideWidth; |
| convParams.dilation_height_factor = dilationHeightFactor; |
| convParams.dilation_width_factor = dilationWidthFactor; |
| convParams.padding_values.height = paddingTop; |
| convParams.padding_values.width = paddingLeft; |
| convParams.quantized_activation_min = output_activation_min; |
| convParams.quantized_activation_max = output_activation_max; |
| |
| NNTRACE_COMP_SWITCH("reference_integer_ops::ConvPerChannel"); |
| tflite::reference_integer_ops::ConvPerChannel( |
| convParams, outputMultiplier.data(), outputShift.data(), |
| convertShapeToTflshape(inputShape), inputData, convertShapeToTflshape(filterShape), |
| filterData, convertShapeToTflshape(biasShape), biasData, |
| convertShapeToTflshape(outputShape), outputData); |
| return true; |
| } |
| |
| template <typename T> |
| bool convQuant8PerChannel(const T* inputData, const Shape& inputShape, const int8_t* filterData, |
| const Shape& filterShape, const float* filterScales, |
| const int32_t* biasData, const Shape& biasShape, int32_t paddingLeft, |
| int32_t paddingRight, int32_t paddingTop, int32_t paddingBottom, |
| int32_t strideWidth, int32_t strideHeight, int32_t dilationWidthFactor, |
| int32_t dilationHeightFactor, int32_t activation, bool useNchw, |
| T* outputData, const Shape& outputShape) { |
| InputWithLayout<T> input(useNchw); |
| OutputWithLayout<T> output(useNchw); |
| NN_RET_CHECK(input.initialize(inputData, inputShape)); |
| NN_RET_CHECK(output.initialize(outputData, outputShape)); |
| NN_RET_CHECK(convQuant8PerChannelNhwc( |
| input.getNhwcBuffer(), input.getNhwcShape(), filterData, filterShape, filterScales, |
| biasData, biasShape, paddingLeft, paddingRight, paddingTop, paddingBottom, strideWidth, |
| strideHeight, dilationWidthFactor, dilationHeightFactor, activation, |
| output.getNhwcBuffer(), output.getNhwcShape())); |
| NN_RET_CHECK(output.commit()); |
| return true; |
| } |
| |
| #undef ANDROID_NN_CONV_PARAMETERS |
| |
| } // namespace |
| |
| bool prepare(IOperationExecutionContext* context) { |
| Shape input = context->getInputShape(kInputTensor); |
| Shape filter = context->getInputShape(kFilterTensor); |
| Shape bias = context->getInputShape(kBiasTensor); |
| |
| if (filter.type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) { |
| NN_RET_CHECK(input.type == OperandType::TENSOR_QUANT8_ASYMM || |
| input.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED); |
| } else { |
| NN_RET_CHECK(input.type == filter.type); |
| } |
| if (input.type == OperandType::TENSOR_QUANT8_ASYMM || |
| input.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| NN_RET_CHECK(bias.type == OperandType::TENSOR_INT32); |
| } else { |
| NN_RET_CHECK(input.type == bias.type); |
| } |
| NN_RET_CHECK_EQ(getNumberOfDimensions(input), 4u); |
| NN_RET_CHECK_EQ(getNumberOfDimensions(filter), 4u); |
| NN_RET_CHECK_EQ(getNumberOfDimensions(bias), 1u); |
| |
| Conv2dParam param; |
| NN_RET_CHECK(param.initialize(context)); |
| |
| uint32_t batches = getSizeOfDimension(input, 0); |
| uint32_t height = getSizeOfDimension(input, param.useNchw ? 2 : 1); |
| uint32_t width = getSizeOfDimension(input, param.useNchw ? 3 : 2); |
| uint32_t channels_in = getSizeOfDimension(input, param.useNchw ? 1 : 3); |
| uint32_t channels_out = getSizeOfDimension(filter, 0); |
| uint32_t filterHeight = getSizeOfDimension(filter, 1); |
| uint32_t filterWidth = getSizeOfDimension(filter, 2); |
| // Only batches can be zero. |
| NN_RET_CHECK_EQ(channels_in, getSizeOfDimension(filter, 3)); |
| NN_RET_CHECK_EQ(channels_out, getSizeOfDimension(bias, 0)); |
| NN_RET_CHECK_GT(height, 0u); |
| NN_RET_CHECK_GT(width, 0u); |
| NN_RET_CHECK_GT(channels_in, 0u); |
| NN_RET_CHECK_GT(channels_out, 0u); |
| |
| int32_t effectiveFilterWidth = (filterWidth - 1) * param.dilation_width_factor + 1; |
| int32_t effectiveFilterHeight = (filterHeight - 1) * param.dilation_height_factor + 1; |
| NN_RET_CHECK_GT(effectiveFilterWidth, param.padding_left); |
| NN_RET_CHECK_GT(effectiveFilterWidth, param.padding_right); |
| NN_RET_CHECK_GT(effectiveFilterHeight, param.padding_top); |
| NN_RET_CHECK_GT(effectiveFilterHeight, param.padding_bottom); |
| |
| uint32_t outWidth = |
| computeOutSize(width, filterWidth, param.stride_width, param.dilation_width_factor, |
| param.padding_left, param.padding_right); |
| uint32_t outHeight = |
| computeOutSize(height, filterHeight, param.stride_height, param.dilation_height_factor, |
| param.padding_top, param.padding_bottom); |
| |
| Shape output = context->getOutputShape(kOutputTensor); |
| output.type = input.type; |
| if (param.useNchw) { |
| output.dimensions = {batches, channels_out, outHeight, outWidth}; |
| } else { |
| output.dimensions = {batches, outHeight, outWidth, channels_out}; |
| } |
| return context->setOutputShape(kOutputTensor, output); |
| } |
| |
| bool execute(IOperationExecutionContext* context) { |
| // Bypass execution in the case of zero-sized input. |
| if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; |
| Conv2dParam param; |
| NN_RET_CHECK(param.initialize(context)); |
| switch (context->getInputType(kInputTensor)) { |
| case OperandType::TENSOR_FLOAT32: |
| return conv(context->getInputBuffer<float>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getInputBuffer<float>(kFilterTensor), |
| context->getInputShape(kFilterTensor), |
| context->getInputBuffer<float>(kBiasTensor), |
| context->getInputShape(kBiasTensor), param.padding_left, |
| param.padding_right, param.padding_top, param.padding_bottom, |
| param.stride_width, param.stride_height, param.dilation_width_factor, |
| param.dilation_height_factor, param.activation, param.useNchw, |
| context->getOutputBuffer<float>(kOutputTensor), |
| context->getOutputShape(kOutputTensor)); |
| case OperandType::TENSOR_FLOAT16: |
| return conv(context->getInputBuffer<_Float16>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getInputBuffer<_Float16>(kFilterTensor), |
| context->getInputShape(kFilterTensor), |
| context->getInputBuffer<_Float16>(kBiasTensor), |
| context->getInputShape(kBiasTensor), param.padding_left, |
| param.padding_right, param.padding_top, param.padding_bottom, |
| param.stride_width, param.stride_height, param.dilation_width_factor, |
| param.dilation_height_factor, param.activation, param.useNchw, |
| context->getOutputBuffer<_Float16>(kOutputTensor), |
| context->getOutputShape(kOutputTensor)); |
| case OperandType::TENSOR_QUANT8_ASYMM: |
| if (context->getInputType(kFilterTensor) == |
| OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) { |
| return convQuant8PerChannel( |
| context->getInputBuffer<uint8_t>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getInputBuffer<int8_t>(kFilterTensor), |
| context->getInputShape(kFilterTensor), |
| std::get<Operand::SymmPerChannelQuantParams>( |
| context->getInputExtraParams(kFilterTensor)) |
| .scales.data(), |
| context->getInputBuffer<int32_t>(kBiasTensor), |
| context->getInputShape(kBiasTensor), param.padding_left, |
| param.padding_right, param.padding_top, param.padding_bottom, |
| param.stride_width, param.stride_height, param.dilation_width_factor, |
| param.dilation_height_factor, param.activation, param.useNchw, |
| context->getOutputBuffer<uint8_t>(kOutputTensor), |
| context->getOutputShape(kOutputTensor)); |
| } else if (context->getInputType(kFilterTensor) == OperandType::TENSOR_QUANT8_ASYMM) { |
| return conv(context->getInputBuffer<uint8_t>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getInputBuffer<uint8_t>(kFilterTensor), |
| context->getInputShape(kFilterTensor), |
| context->getInputBuffer<int32_t>(kBiasTensor), |
| context->getInputShape(kBiasTensor), param.padding_left, |
| param.padding_right, param.padding_top, param.padding_bottom, |
| param.stride_width, param.stride_height, param.dilation_width_factor, |
| param.dilation_height_factor, param.activation, param.useNchw, |
| context->getOutputBuffer<uint8_t>(kOutputTensor), |
| context->getOutputShape(kOutputTensor)); |
| } else { |
| NN_RET_CHECK_FAIL() << "Unsupported filter type for operation " << kOperationName; |
| } |
| case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: |
| if (context->getInputType(kFilterTensor) == |
| OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) { |
| return convQuant8PerChannel( |
| context->getInputBuffer<int8_t>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getInputBuffer<int8_t>(kFilterTensor), |
| context->getInputShape(kFilterTensor), |
| std::get<Operand::SymmPerChannelQuantParams>( |
| context->getInputExtraParams(kFilterTensor)) |
| .scales.data(), |
| context->getInputBuffer<int32_t>(kBiasTensor), |
| context->getInputShape(kBiasTensor), param.padding_left, |
| param.padding_right, param.padding_top, param.padding_bottom, |
| param.stride_width, param.stride_height, param.dilation_width_factor, |
| param.dilation_height_factor, param.activation, param.useNchw, |
| context->getOutputBuffer<int8_t>(kOutputTensor), |
| context->getOutputShape(kOutputTensor)); |
| } else if (context->getInputType(kFilterTensor) == |
| OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| return conv(context->getInputBuffer<int8_t>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getInputBuffer<int8_t>(kFilterTensor), |
| context->getInputShape(kFilterTensor), |
| context->getInputBuffer<int32_t>(kBiasTensor), |
| context->getInputShape(kBiasTensor), param.padding_left, |
| param.padding_right, param.padding_top, param.padding_bottom, |
| param.stride_width, param.stride_height, param.dilation_width_factor, |
| param.dilation_height_factor, param.activation, param.useNchw, |
| context->getOutputBuffer<int8_t>(kOutputTensor), |
| context->getOutputShape(kOutputTensor)); |
| } else { |
| NN_RET_CHECK_FAIL() << "Unsupported filter type for operation " << kOperationName; |
| } |
| default: |
| NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName; |
| } |
| } |
| #endif // NN_INCLUDE_CPU_IMPLEMENTATION |
| |
| } // namespace conv_2d |
| |
| NN_REGISTER_OPERATION_DEFAULT_VALIDATION(CONV_2D, conv_2d::prepare, conv_2d::execute, |
| .allowZeroSizedInput = true); |
| |
| } // namespace nn |
| } // namespace android |