| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "Operations" |
| |
| #include "L2Normalization.h" |
| |
| #include <algorithm> |
| #include <vector> |
| |
| #include "OperationResolver.h" |
| #include "Tracing.h" |
| |
| #ifdef NN_INCLUDE_CPU_IMPLEMENTATION |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wunused-parameter" |
| #pragma clang diagnostic ignored "-Wsign-compare" |
| #pragma clang diagnostic ignored "-Winvalid-partial-specialization" |
| #include <tensorflow/lite/kernels/internal/optimized/optimized_ops.h> |
| #include <tensorflow/lite/kernels/internal/reference/integer_ops/l2normalization.h> |
| #pragma clang diagnostic pop |
| |
| #include "CpuOperationUtils.h" |
| #endif // NN_INCLUDE_CPU_IMPLEMENTATION |
| |
| namespace android { |
| namespace nn { |
| namespace l2_norm { |
| |
| #ifdef NN_INCLUDE_CPU_IMPLEMENTATION |
| namespace { |
| |
| inline bool l2normFloat32Impl(const float* inputData, const Shape& inputShape, int32_t axis, |
| float* outputData, const Shape& /*outputShape*/) { |
| NNTRACE_TRANS("l2normFloat32"); |
| constexpr float kEpsilon = 1e-6f; |
| const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); |
| const uint32_t axisSize = getSizeOfDimension(inputShape, axis); |
| const uint32_t innerSize = |
| getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); |
| for (uint32_t outer = 0; outer < outerSize; ++outer) { |
| const float* inputBeg = inputData + outer * axisSize * innerSize; |
| const float* inputEnd = inputBeg + axisSize * innerSize; |
| float* outputBeg = outputData + outer * axisSize * innerSize; |
| for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBeg, ++inputEnd, ++outputBeg) { |
| float sum = 0.0f; |
| for (const float* p = inputBeg; p < inputEnd; p += innerSize) { |
| float val = *p; |
| sum += val * val; |
| } |
| float l2_norm = std::max(std::sqrt(sum), kEpsilon); |
| float* pOut = outputBeg; |
| for (const float* p = inputBeg; p < inputEnd; p += innerSize, pOut += innerSize) { |
| *pOut = *p / l2_norm; |
| } |
| } |
| } |
| return true; |
| } |
| |
| inline bool l2normQuant8Impl(const uint8_t* inputData, const Shape& inputShape, int32_t axis, |
| uint8_t* outputData, const Shape& /*outputShape*/) { |
| NNTRACE_TRANS("l2normQuant8"); |
| const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); |
| const uint32_t axisSize = getSizeOfDimension(inputShape, axis); |
| const uint32_t innerSize = |
| getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); |
| for (uint32_t outer = 0; outer < outerSize; ++outer) { |
| const uint8_t* inputBeg = inputData + outer * axisSize * innerSize; |
| const uint8_t* inputEnd = inputBeg + axisSize * innerSize; |
| uint8_t* outputBeg = outputData + outer * axisSize * innerSize; |
| for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBeg, ++inputEnd, ++outputBeg) { |
| int32_t sum = 0; |
| for (const uint8_t* p = inputBeg; p < inputEnd; p += innerSize) { |
| int32_t val = static_cast<int32_t>(*p) - inputShape.offset; |
| sum += val * val; |
| } |
| int32_t invMultiplier, invShift; |
| tflite::GetInvSqrtQuantizedMultiplierExp(sum, -1, &invMultiplier, &invShift); |
| uint8_t* pOut = outputBeg; |
| for (const uint8_t* p = inputBeg; p < inputEnd; p += innerSize, pOut += innerSize) { |
| int32_t val = static_cast<int32_t>(*p) - inputShape.offset; |
| int32_t scaledVal = tflite::MultiplyByQuantizedMultiplierSmallerThanOneExp( |
| val * 128, invMultiplier, invShift) + |
| 128; |
| *pOut = static_cast<uint8_t>(std::min(std::max(scaledVal, 0), 255)); |
| } |
| } |
| } |
| return true; |
| } |
| |
| inline bool l2normQuant8SignedImpl(const int8_t* inputData, const Shape& inputShape, int32_t axis, |
| int8_t* outputData, const Shape& /*outputShape*/) { |
| NNTRACE_TRANS("l2normQuant8Signed"); |
| const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); |
| const uint32_t axisSize = getSizeOfDimension(inputShape, axis); |
| const uint32_t innerSize = |
| getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); |
| for (uint32_t outer = 0; outer < outerSize; ++outer) { |
| const int8_t* inputBeg = inputData + outer * axisSize * innerSize; |
| const int8_t* inputEnd = inputBeg + axisSize * innerSize; |
| int8_t* outputBeg = outputData + outer * axisSize * innerSize; |
| for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBeg, ++inputEnd, ++outputBeg) { |
| int32_t sum = 0; |
| for (const int8_t* p = inputBeg; p < inputEnd; p += innerSize) { |
| int32_t val = static_cast<int32_t>(*p) - inputShape.offset; |
| sum += val * val; |
| } |
| int32_t invMultiplier, invShift; |
| tflite::GetInvSqrtQuantizedMultiplierExp(sum, -1, &invMultiplier, &invShift); |
| int8_t* pOut = outputBeg; |
| for (const int8_t* p = inputBeg; p < inputEnd; p += innerSize, pOut += innerSize) { |
| int32_t val = static_cast<int32_t>(*p) - inputShape.offset; |
| int32_t scaledVal = tflite::MultiplyByQuantizedMultiplierSmallerThanOneExp( |
| val * 128, invMultiplier, invShift); |
| *pOut = static_cast<int8_t>(std::min(std::max(scaledVal, -128), 127)); |
| } |
| } |
| } |
| return true; |
| } |
| |
| bool l2normFloat32(const float* inputData, const Shape& inputShape, int32_t axis, float* outputData, |
| const Shape& outputShape) { |
| int32_t ndim = getNumberOfDimensions(inputShape); |
| NN_CHECK(handleNegativeAxis(inputShape, &axis)); |
| // TFLite optimized implementation only supports computation along the last axis |
| if (axis == ndim - 1) { |
| NNTRACE_COMP("optimized_ops::L2Normalization::float"); |
| tflite::L2NormalizationParams param = {.input_zero_point = 0}; |
| tflite::optimized_ops::L2Normalization(param, convertShapeToTflshape(inputShape), inputData, |
| convertShapeToTflshape(outputShape), outputData); |
| return true; |
| } else { |
| return l2normFloat32Impl(inputData, inputShape, axis, outputData, outputShape); |
| } |
| } |
| |
| bool l2normFloat16(const _Float16* inputData, const Shape& inputShape, int32_t axis, |
| _Float16* outputData, const Shape& outputShape) { |
| NNTRACE_TRANS("l2normFloat16"); |
| std::vector<float> inputDataFloat32(getNumberOfElements(inputShape)); |
| convertFloat16ToFloat32(inputData, &inputDataFloat32); |
| std::vector<float> outputDataFloat32(getNumberOfElements(outputShape)); |
| |
| l2normFloat32(inputDataFloat32.data(), inputShape, axis, outputDataFloat32.data(), outputShape); |
| convertFloat32ToFloat16(outputDataFloat32, outputData); |
| |
| return true; |
| } |
| |
| bool l2normQuant8(const uint8_t* inputData, const Shape& inputShape, int32_t axis, |
| uint8_t* outputData, const Shape& outputShape) { |
| int32_t ndim = getNumberOfDimensions(inputShape); |
| NN_CHECK(handleNegativeAxis(inputShape, &axis)); |
| // TFLite optimized implementation only supports computation along the last axis |
| if (axis == ndim - 1) { |
| NNTRACE_COMP("optimized_ops::L2Normalization::uint8"); |
| tflite::L2NormalizationParams param = {.input_zero_point = inputShape.offset}; |
| tflite::optimized_ops::L2Normalization(param, convertShapeToTflshape(inputShape), inputData, |
| convertShapeToTflshape(outputShape), outputData); |
| return true; |
| } else { |
| return l2normQuant8Impl(inputData, inputShape, axis, outputData, outputShape); |
| } |
| } |
| |
| bool l2normQuant8Signed(const int8_t* inputData, const Shape& inputShape, int32_t axis, |
| int8_t* outputData, const Shape& outputShape) { |
| int32_t ndim = getNumberOfDimensions(inputShape); |
| NN_CHECK(handleNegativeAxis(inputShape, &axis)); |
| // TFLite implementation only supports computation along the last axis |
| if (axis == ndim - 1) { |
| NNTRACE_COMP("reference_integer_ops::L2Normalization"); |
| const int32_t outerSize = getNumberOfElements(inputShape, 0, axis); |
| const int32_t axisSize = getSizeOfDimension(inputShape, axis); |
| tflite::reference_integer_ops::L2Normalization(inputShape.offset, outerSize, axisSize, |
| inputData, outputData); |
| return true; |
| } else { |
| return l2normQuant8SignedImpl(inputData, inputShape, axis, outputData, outputShape); |
| } |
| } |
| |
| } // namespace |
| |
| bool prepare(IOperationExecutionContext* context) { |
| const Shape& input = context->getInputShape(kInputTensor); |
| int32_t numDimensions = getNumberOfDimensions(input); |
| int32_t axis = context->getNumInputs() == kNumInputs |
| ? context->getInputValue<int32_t>(kAxisScalar) |
| : -1; |
| NN_RET_CHECK_LE(numDimensions, 4); |
| NN_RET_CHECK_GE(axis, -numDimensions); |
| NN_RET_CHECK_LT(axis, numDimensions); |
| Shape output = context->getOutputShape(kOutputTensor); |
| output.type = input.type; |
| output.dimensions = input.dimensions; |
| if (output.type == OperandType::TENSOR_QUANT8_ASYMM) { |
| output.scale = 1.0f / 128.0f; |
| output.offset = 128; |
| } else if (output.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { |
| output.scale = 1.0f / 128.0f; |
| output.offset = 0; |
| } else { |
| output.scale = 0; |
| output.offset = 0; |
| } |
| return context->setOutputShape(kOutputTensor, output); |
| } |
| |
| bool execute(IOperationExecutionContext* context) { |
| int32_t axis = context->getNumInputs() == kNumInputs |
| ? context->getInputValue<int32_t>(kAxisScalar) |
| : -1; |
| NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis)); |
| switch (context->getInputType(kInputTensor)) { |
| case OperandType::TENSOR_FLOAT32: |
| return l2normFloat32(context->getInputBuffer<float>(kInputTensor), |
| context->getInputShape(kInputTensor), axis, |
| context->getOutputBuffer<float>(kOutputTensor), |
| context->getOutputShape(kOutputTensor)); |
| case OperandType::TENSOR_FLOAT16: |
| return l2normFloat16(context->getInputBuffer<_Float16>(kInputTensor), |
| context->getInputShape(kInputTensor), axis, |
| context->getOutputBuffer<_Float16>(kOutputTensor), |
| context->getOutputShape(kOutputTensor)); |
| case OperandType::TENSOR_QUANT8_ASYMM: |
| return l2normQuant8(context->getInputBuffer<uint8_t>(kInputTensor), |
| context->getInputShape(kInputTensor), axis, |
| context->getOutputBuffer<uint8_t>(kOutputTensor), |
| context->getOutputShape(kOutputTensor)); |
| case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: |
| return l2normQuant8Signed(context->getInputBuffer<int8_t>(kInputTensor), |
| context->getInputShape(kInputTensor), axis, |
| context->getOutputBuffer<int8_t>(kOutputTensor), |
| context->getOutputShape(kOutputTensor)); |
| default: |
| NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName; |
| } |
| } |
| #endif // NN_INCLUDE_CPU_IMPLEMENTATION |
| |
| } // namespace l2_norm |
| |
| NN_REGISTER_OPERATION_DEFAULT_VALIDATION(L2_NORMALIZATION, l2_norm::prepare, l2_norm::execute); |
| |
| } // namespace nn |
| } // namespace android |