blob: 1e75b47c5b802eb71be5e701e22e048a200cf1c9 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Operations"
#include "Reverse.h"
#include "OperationResolver.h"
#include "OperationsExecutionUtils.h"
#ifdef NN_INCLUDE_CPU_IMPLEMENTATION
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-parameter"
#pragma clang diagnostic ignored "-Wsign-compare"
#include <tensorflow/lite/kernels/internal/reference/reference_ops.h>
#pragma clang diagnostic pop
#include "CpuOperationUtils.h"
#endif // NN_INCLUDE_CPU_IMPLEMENTATION
namespace android {
namespace nn {
namespace reverse_op {
#ifdef NN_INCLUDE_CPU_IMPLEMENTATION
bool prepare(IOperationExecutionContext* context) {
const Shape inputShape = context->getInputShape(kInputTensor);
// Input tensor must be of rank 1..8.
const auto inputTensorRank = getNumberOfDimensions(inputShape);
NN_RET_CHECK_GE(inputTensorRank, 1U);
NN_RET_CHECK_LE(inputTensorRank, 8U);
// Check the axis dimension value.
const Shape axisShape = context->getInputShape(kInputAxisTensor);
NN_RET_CHECK_EQ(getNumberOfDimensions(axisShape), 1U);
NN_RET_CHECK_EQ(getNumberOfElements(axisShape), 1U);
const int32_t axisDimension = (context->getInputBuffer<int32_t>(kInputAxisTensor))[0];
NN_RET_CHECK_GE(axisDimension, 0);
NN_RET_CHECK_LT(uint32_t(axisDimension), inputTensorRank);
Shape outputShape = context->getOutputShape(kOutputTensor);
NN_RET_CHECK(SetShape(inputShape, &outputShape));
return context->setOutputShape(kOutputTensor, outputShape);
}
template <typename T>
bool reverse(IOperationExecutionContext* context) {
// Note that the NNAPI REVERSE operation requires input and output tensor to
// have the same dimensions.
const tflite::RuntimeShape tensorShape =
convertShapeToTflshape(context->getInputShape(kInputTensor));
tflite::reference_ops::Reverse((context->getInputBuffer<int32_t>(kInputAxisTensor))[0],
tensorShape, context->getInputBuffer<T>(kInputTensor),
tensorShape, context->getOutputBuffer<T>(kOutputTensor));
return true;
}
bool execute(IOperationExecutionContext* context) {
switch (context->getInputType(kInputTensor)) {
case OperandType::TENSOR_FLOAT16:
return reverse<_Float16>(context);
case OperandType::TENSOR_FLOAT32:
return reverse<float>(context);
case OperandType::TENSOR_QUANT8_ASYMM:
return reverse<uint8_t>(context);
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
return reverse<int8_t>(context);
case OperandType::TENSOR_INT32:
return reverse<int32_t>(context);
default:
NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
}
}
#endif // NN_INCLUDE_CPU_IMPLEMENTATION
} // namespace reverse_op
NN_REGISTER_OPERATION_DEFAULT_VALIDATION(REVERSE, reverse_op::prepare, reverse_op::execute);
} // namespace nn
} // namespace android