| /* |
| * Copyright (C) 2018 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "Operations" |
| |
| #include "Select.h" |
| |
| #include "IndexedShapeWrapper.h" |
| #include "OperationResolver.h" |
| #include "OperationsExecutionUtils.h" |
| |
| namespace android { |
| namespace nn { |
| namespace select_op { |
| namespace { |
| |
| template <typename T> |
| bool compute(const bool8* conditionData, const Shape& conditionShape, const T* aData, |
| const Shape& aShape, const T* bData, const Shape& bShape, T* outputData, |
| const Shape& outputShape) { |
| // The code assumes that condition has the same shape as all other tensors. |
| // This should be checked during preparation stage. |
| uint32_t size = getNumberOfElements(conditionShape); |
| for (uint32_t i = 0; i < size; ++i) { |
| T a = aData[i]; |
| T b = bData[i]; |
| |
| if constexpr (std::is_same_v<T, uint8_t> || std::is_same_v<T, int8_t>) { |
| a = requantize<T>(a, aShape, outputShape); |
| b = requantize<T>(b, bShape, outputShape); |
| } |
| outputData[i] = conditionData[i] ? a : b; |
| } |
| return true; |
| } |
| |
| template <typename T> |
| bool executeTyped(IOperationExecutionContext* context) { |
| return compute<T>( |
| context->getInputBuffer<bool8>(kInputCondition), |
| context->getInputShape(kInputCondition), context->getInputBuffer<T>(kInputTensor1), |
| context->getInputShape(kInputTensor1), context->getInputBuffer<T>(kInputTensor2), |
| context->getInputShape(kInputTensor2), context->getOutputBuffer<T>(kOutputTensor), |
| context->getOutputShape(kOutputTensor)); |
| } |
| |
| } // namespace |
| |
| bool prepare(IOperationExecutionContext* context) { |
| Shape inputCondition = context->getInputShape(kInputCondition); |
| Shape input1 = context->getInputShape(kInputTensor1); |
| if (inputCondition.dimensions.size() != input1.dimensions.size()) { |
| LOG(ERROR) << "Condition and input tensor dimensions are not equal"; |
| return false; |
| } |
| for (size_t i = 0; i < inputCondition.dimensions.size(); ++i) { |
| if (inputCondition.dimensions[i] != input1.dimensions[i]) { |
| LOG(ERROR) << "Condition and input tensor dimensions are not equal"; |
| return false; |
| } |
| } |
| |
| Shape input2 = context->getInputShape(kInputTensor2); |
| NN_RET_CHECK(SameShape(input1, input2)); |
| |
| Shape output = context->getOutputShape(kOutputTensor); |
| NN_RET_CHECK(SetShape(input1, &output)); |
| return context->setOutputShape(kOutputTensor, output); |
| } |
| |
| bool execute(IOperationExecutionContext* context) { |
| switch (context->getInputType(kInputTensor1)) { |
| case OperandType::TENSOR_FLOAT16: |
| return executeTyped<_Float16>(context); |
| case OperandType::TENSOR_FLOAT32: |
| return executeTyped<float>(context); |
| case OperandType::TENSOR_INT32: |
| return executeTyped<int32_t>(context); |
| case OperandType::TENSOR_QUANT8_ASYMM: |
| return executeTyped<uint8_t>(context); |
| case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: |
| return executeTyped<int8_t>(context); |
| default: |
| NN_RET_CHECK_FAIL() << "Unsupported tensor type for SELECT op."; |
| } |
| } |
| |
| } // namespace select_op |
| |
| NN_REGISTER_OPERATION_DEFAULT_VALIDATION(SELECT, select_op::prepare, select_op::execute); |
| |
| } // namespace nn |
| } // namespace android |