blob: eb0e3b5784e2b26ac6e1a0d56e8280134f326217 [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "DepthwiseConv2DOperationConverter.h"
#include <vector>
#include "OperationConverterResolver.h"
#include "SubGraphContext.h"
namespace android {
namespace nn {
Result<void> DepthwiseConv2DOperationConverter::convert(const Operation& operation,
SubGraphContext* context) const {
const Model::Subgraph* subgraph = context->getSubgraph();
// add opcode for DEPTHWISE_CONV_2D if not added yet
uint32_t opCodeIdx = context->addOpCode(OperationType::DEPTHWISE_CONV_2D);
// if there are less than 9 inputs or the input at the 8th index is a BOOL, there is implicit
// padding
const bool isImplicitPadding =
(operation.inputs.size() < 9 ||
subgraph->operands[operation.inputs[8]].type == OperandType::BOOL);
std::vector<int32_t> inputs = NN_TRY(getConv2DInputs(operation, context));
std::vector<int32_t> outputs = NN_TRY(getConv2DOutputs(operation, context));
// if explicit padding, we need to decompose the operation to a separate padding op and a conv2d
// op
if (!isImplicitPadding) {
auto padOpIdx = NN_TRY(decomposeExplicitPadding(operation, context));
inputs[0] = padOpIdx;
}
int baseOptionsIdx = 4;
tflite::Padding padding;
if (isImplicitPadding) {
const Operand& paddingTypeOperand = subgraph->operands[operation.inputs[3]];
NN_RET_CHECK(isOperandConstant(paddingTypeOperand));
int32_t paddingType = context->getConstantScalar<int32_t>(paddingTypeOperand);
padding = getTFLitePadding(paddingType);
} else {
padding = tflite::Padding::Padding_VALID;
baseOptionsIdx = 7;
}
// check if stride, depthwise multiplier, and activation Operands are constant
const Operand& strideWOperand =
subgraph->operands[operation.inputs[baseOptionsIdx + kStrideWOffset]];
const Operand& strideHOperand =
subgraph->operands[operation.inputs[baseOptionsIdx + kStrideHOffset]];
const Operand& activationOperand =
subgraph->operands[operation.inputs[baseOptionsIdx + kActivationOffset]];
const Operand& depthwiseMultiplierOperand =
subgraph->operands[operation.inputs[baseOptionsIdx + kDepthwiseMultiplier]];
NN_RET_CHECK(isOperandConstant(strideWOperand));
NN_RET_CHECK(isOperandConstant(strideHOperand));
NN_RET_CHECK(isOperandConstant(activationOperand));
NN_RET_CHECK(isOperandConstant(depthwiseMultiplierOperand));
// get strides and activation
int32_t strideW = context->getConstantScalar<int32_t>(strideWOperand);
int32_t strideH = context->getConstantScalar<int32_t>(strideHOperand);
int32_t depthwiseMultiplier = context->getConstantScalar<int32_t>(depthwiseMultiplierOperand);
FusedActivationFunc activation = static_cast<FusedActivationFunc>(
context->getConstantScalar<int32_t>(activationOperand));
// check for nchw
int isNchwIdx = baseOptionsIdx + kIsNchwOffset;
if (operation.inputs.size() > static_cast<uint32_t>(isNchwIdx)) {
const Operand& isNchwOperand = subgraph->operands[operation.inputs[isNchwIdx]];
NN_RET_CHECK(isOperandConstant(isNchwOperand));
bool isNchw = context->getConstantScalar<bool>(isNchwOperand);
NN_RET_CHECK(!isNchw) << "TFLite does not support NCHW formatted input tensors";
}
// dilations
int dilationWIdx = baseOptionsIdx + kDilationWOffset;
int dilationHIdx = baseOptionsIdx + kDilationHOffset;
// default dilation factors are 1
int32_t dilationW = 1;
int32_t dilationH = 1;
if (operation.inputs.size() > static_cast<uint32_t>(dilationWIdx)) {
const Operand& dilationWOperand = subgraph->operands[operation.inputs[dilationWIdx]];
NN_RET_CHECK(isOperandConstant(dilationWOperand));
dilationW = context->getConstantScalar<int32_t>(dilationWOperand);
}
if (operation.inputs.size() > static_cast<uint32_t>(dilationHIdx)) {
const Operand& dilationHOperand = subgraph->operands[operation.inputs[dilationHIdx]];
NN_RET_CHECK(isOperandConstant(dilationHOperand));
dilationH = context->getConstantScalar<int32_t>(dilationHOperand);
}
flatbuffers::Offset<tflite::DepthwiseConv2DOptions> optionsFlatbuffer =
tflite::CreateDepthwiseConv2DOptions(
context->getBuilder(), padding, strideW, strideH, depthwiseMultiplier,
NN_TRY(getTfliteActivation(activation)) /* fused_activation_function */,
dilationW, dilationH);
auto operatorFlatbuffer = tflite::CreateOperatorDirect(
context->getBuilder() /* builder */, opCodeIdx /* opcode_index */, &inputs /* inputs */,
&outputs /* outputs */,
tflite::BuiltinOptions::
BuiltinOptions_DepthwiseConv2DOptions /* builtin_options_type */,
optionsFlatbuffer.Union() /* builtin_options */);
context->addOperatorFlatbuffer(operatorFlatbuffer);
return {};
}
NN_REGISTER_OPERATION_CONVERTER(DEPTHWISE_CONV_2D, DepthwiseConv2DOperationConverter);
} // namespace nn
} // namespace android