blob: c88ff056c591fc8534e91cd5921a5d64d92ff5f3 [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Conv2DOperationConverter.h"
#include <vector>
#include "OperationConverterResolver.h"
#include "SubGraphContext.h"
namespace android {
namespace nn {
Result<std::vector<int32_t>> Conv2DOperationConverter::getConv2DInputs(
const Operation& operation, SubGraphContext* context) const {
NN_RET_CHECK(isOperandConstant(
context->getSubgraph()->operands[operation.inputs[kFilterTensorIdx]]));
NN_TRY(context->createTensorFlatbufferFromOperand(operation.inputs[kInputTensorIdx]));
// TFLite does not support asymmetric tensors for convolution filters
NN_TRY(context->createTensorFlatbufferFromOperand(operation.inputs[kFilterTensorIdx],
true /* makeSymmetric */));
NN_TRY(context->createTensorFlatbufferFromOperand(operation.inputs[kBiasTensorIdx]));
std::vector<int32_t> inputs{
context->getTensorIdxFromOperandIdx(operation.inputs[kInputTensorIdx]),
context->getTensorIdxFromOperandIdx(operation.inputs[kFilterTensorIdx]),
context->getTensorIdxFromOperandIdx(operation.inputs[kBiasTensorIdx])};
return inputs;
}
Result<std::vector<int32_t>> Conv2DOperationConverter::getConv2DOutputs(
const Operation& operation, SubGraphContext* context) const {
NN_TRY(context->createTensorFlatbufferFromOperand(operation.outputs[kOutputTensorIdx]));
std::vector<int32_t> outputs{
context->getTensorIdxFromOperandIdx(operation.outputs[kOutputTensorIdx])};
return outputs;
}
Result<int> Conv2DOperationConverter::decomposeExplicitPadding(const Operation& operation,
SubGraphContext* context) const {
const Model::Subgraph* subgraph = context->getSubgraph();
const Operand& inputOperand = subgraph->operands[operation.inputs[0]];
// add opcode for PAD if it does not exist yet
uint32_t opCodeIdx = context->addOpCode(OperationType::PAD);
// pad options
auto padOptionsFlatbuffer = tflite::CreatePadOptions(context->getBuilder());
// check to make sure padding Operands are constants
const Operand& frontWidthPaddingOperand = subgraph->operands[operation.inputs[3]];
const Operand& backWidthPaddingOperand = subgraph->operands[operation.inputs[4]];
const Operand& frontHeightPaddingOperand = subgraph->operands[operation.inputs[5]];
const Operand& backHeightPaddingOperand = subgraph->operands[operation.inputs[6]];
NN_RET_CHECK(isOperandConstant(frontWidthPaddingOperand));
NN_RET_CHECK(isOperandConstant(backWidthPaddingOperand));
NN_RET_CHECK(isOperandConstant(frontHeightPaddingOperand));
NN_RET_CHECK(isOperandConstant(backHeightPaddingOperand));
// get padding params
int32_t frontHeightPadding = context->getConstantScalar<int32_t>(frontHeightPaddingOperand);
int32_t backHeightPadding = context->getConstantScalar<int32_t>(backHeightPaddingOperand);
int32_t frontWidthPadding = context->getConstantScalar<int32_t>(frontWidthPaddingOperand);
int32_t backWidthPadding = context->getConstantScalar<int32_t>(backWidthPaddingOperand);
// build padding buffer
const Dimensions& dims = inputOperand.dimensions;
int numDimensionsInput = static_cast<int>(dims.size());
std::vector<int32_t> paddingData(numDimensionsInput * 2, 0);
paddingData[2] = frontHeightPadding;
paddingData[3] = backHeightPadding;
paddingData[4] = frontWidthPadding;
paddingData[5] = backWidthPadding;
uint32_t paddingBufferIdx = context->addBufferFromData(
reinterpret_cast<uint8_t*>(paddingData.data()), paddingData.size() * sizeof(int32_t));
// create new tensor for padding
std::vector<int32_t> padShape{numDimensionsInput, 2};
auto padTensor = tflite::CreateTensorDirect(context->getBuilder(), &padShape /* shape */,
tflite::TensorType::TensorType_INT32 /* type */,
paddingBufferIdx /* buffer */);
int padTensorIdx = context->addTensorFlatbuffer(padTensor);
// add inputs for padding operation
std::vector<int32_t> padInputs = {context->getTensorIdxFromOperandIdx(operation.inputs[0]),
padTensorIdx};
// get dimensions of output of pad operation
std::vector<int32_t> padToConv2dShape(dims.begin(), dims.end());
// keep unknown height and width dimensions unknown
padToConv2dShape[1] = padToConv2dShape[1] != 0
? frontHeightPadding + padToConv2dShape[1] + backHeightPadding
: -1;
padToConv2dShape[2] = padToConv2dShape[2] != 0
? frontWidthPadding + padToConv2dShape[2] + backWidthPadding
: -1;
replaceZeroDimensions(&padToConv2dShape);
// build quantization parameters
std::vector<float> scaleVector{inputOperand.scale};
std::vector<int64_t> zeroPointVector{inputOperand.zeroPoint};
// min and max used to convert TFLite models to TF models, so it is unused in this case and can
// be set to 0
std::vector<float> minVector{0};
std::vector<float> maxVector{0};
auto quantizationParams = tflite::CreateQuantizationParametersDirect(
context->getBuilder(), &minVector /* min */, &maxVector /* max */,
&scaleVector /* scale */, &zeroPointVector /* zero_point */,
tflite::QuantizationDetails::QuantizationDetails_NONE /* details_type */);
// create new tensor to be output of pad & input for conv2d
auto padToConv2dTensor = tflite::CreateTensorDirect(
context->getBuilder(), &padToConv2dShape /* shape */,
NN_TRY(getTensorFlatbufferOperandType(inputOperand.type)) /* type */, 0 /* buffer */,
0 /* name */, quantizationParams /* quantization */);
int padToConv2dTensorIdx = context->addTensorFlatbuffer(padToConv2dTensor);
// set output for padding operation and add to operators
std::vector<int32_t> padOutputs{padToConv2dTensorIdx};
OperatorFlatbuffer padOp = tflite::CreateOperatorDirect(
context->getBuilder(), opCodeIdx, &padInputs, &padOutputs,
tflite::BuiltinOptions::BuiltinOptions_PadOptions, padOptionsFlatbuffer.Union());
context->addOperatorFlatbuffer(padOp);
// Return tensor index of pad output created
return padToConv2dTensorIdx;
}
Result<void> Conv2DOperationConverter::convert(const Operation& operation,
SubGraphContext* context) const {
const Model::Subgraph* subgraph = context->getSubgraph();
// add opcode for CONV_2D if not added yet
uint32_t opCodeIdx = context->addOpCode(OperationType::CONV_2D);
// if there are less than 8 inputs or the input at the 7th index is a BOOL, there is implicit
// padding
bool isImplicitPadding = false;
if (operation.inputs.size() < 8 ||
subgraph->operands[operation.inputs[7]].type == OperandType::BOOL) {
isImplicitPadding = true;
}
std::vector<int32_t> inputs = NN_TRY(getConv2DInputs(operation, context));
std::vector<int32_t> outputs = NN_TRY(getConv2DOutputs(operation, context));
// if explicit padding, we need to decompose the operation to a separate padding op and a conv2d
// op
if (!isImplicitPadding) {
auto padOpIdx = NN_TRY(decomposeExplicitPadding(operation, context));
inputs[0] = padOpIdx;
}
int baseOptionsIdx = 4;
tflite::Padding padding;
if (isImplicitPadding) {
const Operand& paddingTypeOperand = subgraph->operands[operation.inputs[3]];
NN_RET_CHECK(isOperandConstant(paddingTypeOperand));
int32_t paddingType = context->getConstantScalar<int32_t>(paddingTypeOperand);
padding = getTFLitePadding(paddingType);
} else {
padding = tflite::Padding::Padding_VALID;
baseOptionsIdx = 7;
}
// check if stride and activation Operands are constant
const Operand& strideWOperand =
subgraph->operands[operation.inputs[baseOptionsIdx + kStrideWOffset]];
const Operand& strideHOperand =
subgraph->operands[operation.inputs[baseOptionsIdx + kStrideHOffset]];
const Operand& activationOperand =
subgraph->operands[operation.inputs[baseOptionsIdx + kActivationOffset]];
NN_RET_CHECK(isOperandConstant(strideWOperand));
NN_RET_CHECK(isOperandConstant(strideHOperand));
NN_RET_CHECK(isOperandConstant(activationOperand));
// get strides and activation
int32_t strideW = context->getConstantScalar<int32_t>(strideWOperand);
int32_t strideH = context->getConstantScalar<int32_t>(strideHOperand);
FusedActivationFunc activation = static_cast<FusedActivationFunc>(
context->getConstantScalar<int32_t>(activationOperand));
// check for nchw
int isNchwIdx = baseOptionsIdx + kIsNchwOffset;
if (operation.inputs.size() > static_cast<uint32_t>(isNchwIdx)) {
const Operand& isNchwOperand = subgraph->operands[operation.inputs[isNchwIdx]];
NN_RET_CHECK(isOperandConstant(isNchwOperand));
bool isNchw = context->getConstantScalar<bool>(isNchwOperand);
NN_RET_CHECK(!isNchw) << "TFLite does not support NCHW formatted input tensors";
}
// dilations
int dilationWIdx = baseOptionsIdx + kDilationWOffset;
int dilationHIdx = baseOptionsIdx + kDilationHOffset;
// default dilation factors are 1
int32_t dilationW = 1;
int32_t dilationH = 1;
if (operation.inputs.size() > static_cast<uint32_t>(dilationWIdx)) {
const Operand& dilationWOperand = subgraph->operands[operation.inputs[dilationWIdx]];
NN_RET_CHECK(isOperandConstant(dilationWOperand));
dilationW = context->getConstantScalar<int32_t>(dilationWOperand);
}
if (operation.inputs.size() > static_cast<uint32_t>(dilationHIdx)) {
const Operand& dilationHOperand = subgraph->operands[operation.inputs[dilationHIdx]];
NN_RET_CHECK(isOperandConstant(dilationHOperand));
dilationH = context->getConstantScalar<int32_t>(dilationHOperand);
}
flatbuffers::Offset<tflite::Conv2DOptions> optionsFlatbuffer = tflite::CreateConv2DOptions(
context->getBuilder(), padding, strideW, strideH,
NN_TRY(getTfliteActivation(activation)) /* fused_activation_function */, dilationW,
dilationH);
auto operatorFlatbuffer = tflite::CreateOperatorDirect(
context->getBuilder() /* builder */, opCodeIdx /* opcode_index */, &inputs /* inputs */,
&outputs /* outputs */,
tflite::BuiltinOptions::BuiltinOptions_Conv2DOptions /* builtin_options_type */,
optionsFlatbuffer.Union() /* builtin_options */);
context->addOperatorFlatbuffer(operatorFlatbuffer);
return {};
}
NN_REGISTER_OPERATION_CONVERTER(CONV_2D, Conv2DOperationConverter);
} // namespace nn
} // namespace android