| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| // Provides C++ classes to more easily use the Neural Networks API. |
| // TODO(b/117845862): this should be auto generated from NeuralNetworksWrapper.h. |
| |
| #ifndef ANDROID_PACKAGES_MODULES_NEURALNETWORKS_RUNTIME_TEST_TEST_NEURAL_NETWORKS_WRAPPER_H |
| #define ANDROID_PACKAGES_MODULES_NEURALNETWORKS_RUNTIME_TEST_TEST_NEURAL_NETWORKS_WRAPPER_H |
| |
| #include <math.h> |
| |
| #include <algorithm> |
| #include <memory> |
| #include <optional> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| #include "NeuralNetworks.h" |
| #include "NeuralNetworksWrapper.h" |
| #include "NeuralNetworksWrapperExtensions.h" |
| |
| #ifndef __NNAPI_FL5_MIN_ANDROID_API__ |
| #define __NNAPI_FL5_MIN_ANDROID_API__ __ANDROID_API_FUTURE__ |
| #endif |
| |
| namespace android { |
| namespace nn { |
| namespace test_wrapper { |
| |
| using wrapper::Event; |
| using wrapper::ExecutePreference; |
| using wrapper::ExecutePriority; |
| using wrapper::ExtensionModel; |
| using wrapper::ExtensionOperandParams; |
| using wrapper::ExtensionOperandType; |
| using wrapper::OperandType; |
| using wrapper::Result; |
| using wrapper::SymmPerChannelQuantParams; |
| using wrapper::Type; |
| |
| class Memory { |
| public: |
| // Takes ownership of a ANeuralNetworksMemory |
| Memory(ANeuralNetworksMemory* memory) : mMemory(memory) {} |
| |
| Memory(size_t size, int protect, int fd, size_t offset) { |
| mValid = ANeuralNetworksMemory_createFromFd(size, protect, fd, offset, &mMemory) == |
| ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| #ifdef __ANDROID__ |
| Memory(AHardwareBuffer* buffer) { |
| mValid = ANeuralNetworksMemory_createFromAHardwareBuffer(buffer, &mMemory) == |
| ANEURALNETWORKS_NO_ERROR; |
| } |
| #endif // __ANDROID__ |
| |
| virtual ~Memory() { ANeuralNetworksMemory_free(mMemory); } |
| |
| // Disallow copy semantics to ensure the runtime object can only be freed |
| // once. Copy semantics could be enabled if some sort of reference counting |
| // or deep-copy system for runtime objects is added later. |
| Memory(const Memory&) = delete; |
| Memory& operator=(const Memory&) = delete; |
| |
| // Move semantics to remove access to the runtime object from the wrapper |
| // object that is being moved. This ensures the runtime object will be |
| // freed only once. |
| Memory(Memory&& other) { *this = std::move(other); } |
| Memory& operator=(Memory&& other) { |
| if (this != &other) { |
| ANeuralNetworksMemory_free(mMemory); |
| mMemory = other.mMemory; |
| mValid = other.mValid; |
| other.mMemory = nullptr; |
| other.mValid = false; |
| } |
| return *this; |
| } |
| |
| ANeuralNetworksMemory* get() const { return mMemory; } |
| bool isValid() const { return mValid; } |
| |
| private: |
| ANeuralNetworksMemory* mMemory = nullptr; |
| bool mValid = true; |
| }; |
| |
| class Model { |
| public: |
| Model() { |
| // TODO handle the value returned by this call |
| ANeuralNetworksModel_create(&mModel); |
| } |
| ~Model() { ANeuralNetworksModel_free(mModel); } |
| |
| // Disallow copy semantics to ensure the runtime object can only be freed |
| // once. Copy semantics could be enabled if some sort of reference counting |
| // or deep-copy system for runtime objects is added later. |
| Model(const Model&) = delete; |
| Model& operator=(const Model&) = delete; |
| |
| // Move semantics to remove access to the runtime object from the wrapper |
| // object that is being moved. This ensures the runtime object will be |
| // freed only once. |
| Model(Model&& other) { *this = std::move(other); } |
| Model& operator=(Model&& other) { |
| if (this != &other) { |
| ANeuralNetworksModel_free(mModel); |
| mModel = other.mModel; |
| mNextOperandId = other.mNextOperandId; |
| mValid = other.mValid; |
| mRelaxed = other.mRelaxed; |
| mFinished = other.mFinished; |
| other.mModel = nullptr; |
| other.mNextOperandId = 0; |
| other.mValid = false; |
| other.mRelaxed = false; |
| other.mFinished = false; |
| } |
| return *this; |
| } |
| |
| Result finish() { |
| if (mValid) { |
| auto result = static_cast<Result>(ANeuralNetworksModel_finish(mModel)); |
| if (result != Result::NO_ERROR) { |
| mValid = false; |
| } |
| mFinished = true; |
| return result; |
| } else { |
| return Result::BAD_STATE; |
| } |
| } |
| |
| uint32_t addOperand(const OperandType* type) { |
| if (ANeuralNetworksModel_addOperand(mModel, &(type->operandType)) != |
| ANEURALNETWORKS_NO_ERROR) { |
| mValid = false; |
| } |
| if (type->channelQuant) { |
| if (ANeuralNetworksModel_setOperandSymmPerChannelQuantParams( |
| mModel, mNextOperandId, &type->channelQuant.value().params) != |
| ANEURALNETWORKS_NO_ERROR) { |
| mValid = false; |
| } |
| } |
| return mNextOperandId++; |
| } |
| |
| template <typename T> |
| uint32_t addConstantOperand(const OperandType* type, const T& value) { |
| static_assert(sizeof(T) <= ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES, |
| "Values larger than ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES " |
| "not supported"); |
| uint32_t index = addOperand(type); |
| setOperandValue(index, &value); |
| return index; |
| } |
| |
| uint32_t addModelOperand(const Model* value) { |
| OperandType operandType(Type::MODEL, {}); |
| uint32_t operand = addOperand(&operandType); |
| setOperandValueFromModel(operand, value); |
| return operand; |
| } |
| |
| void setOperandValue(uint32_t index, const void* buffer, size_t length) { |
| if (ANeuralNetworksModel_setOperandValue(mModel, index, buffer, length) != |
| ANEURALNETWORKS_NO_ERROR) { |
| mValid = false; |
| } |
| } |
| |
| template <typename T> |
| void setOperandValue(uint32_t index, const T* value) { |
| static_assert(!std::is_pointer<T>(), "No operand may have a pointer as its value"); |
| return setOperandValue(index, value, sizeof(T)); |
| } |
| |
| void setOperandValueFromMemory(uint32_t index, const Memory* memory, uint32_t offset, |
| size_t length) { |
| if (ANeuralNetworksModel_setOperandValueFromMemory(mModel, index, memory->get(), offset, |
| length) != ANEURALNETWORKS_NO_ERROR) { |
| mValid = false; |
| } |
| } |
| |
| void setOperandValueFromModel(uint32_t index, const Model* value) { |
| if (ANeuralNetworksModel_setOperandValueFromModel(mModel, index, value->mModel) != |
| ANEURALNETWORKS_NO_ERROR) { |
| mValid = false; |
| } |
| } |
| |
| void addOperation(ANeuralNetworksOperationType type, const std::vector<uint32_t>& inputs, |
| const std::vector<uint32_t>& outputs) { |
| if (ANeuralNetworksModel_addOperation(mModel, type, static_cast<uint32_t>(inputs.size()), |
| inputs.data(), static_cast<uint32_t>(outputs.size()), |
| outputs.data()) != ANEURALNETWORKS_NO_ERROR) { |
| mValid = false; |
| } |
| } |
| void identifyInputsAndOutputs(const std::vector<uint32_t>& inputs, |
| const std::vector<uint32_t>& outputs) { |
| if (ANeuralNetworksModel_identifyInputsAndOutputs( |
| mModel, static_cast<uint32_t>(inputs.size()), inputs.data(), |
| static_cast<uint32_t>(outputs.size()), |
| outputs.data()) != ANEURALNETWORKS_NO_ERROR) { |
| mValid = false; |
| } |
| } |
| |
| void relaxComputationFloat32toFloat16(bool isRelax) { |
| if (ANeuralNetworksModel_relaxComputationFloat32toFloat16(mModel, isRelax) == |
| ANEURALNETWORKS_NO_ERROR) { |
| mRelaxed = isRelax; |
| } |
| } |
| |
| ANeuralNetworksModel* getHandle() const { return mModel; } |
| bool isValid() const { return mValid; } |
| bool isRelaxed() const { return mRelaxed; } |
| bool isFinished() const { return mFinished; } |
| |
| protected: |
| ANeuralNetworksModel* mModel = nullptr; |
| // We keep track of the operand ID as a convenience to the caller. |
| uint32_t mNextOperandId = 0; |
| bool mValid = true; |
| bool mRelaxed = false; |
| bool mFinished = false; |
| }; |
| |
| class Compilation { |
| public: |
| // On success, createForDevice(s) will return Result::NO_ERROR and the created compilation; |
| // otherwise, it will return the error code and Compilation object wrapping a nullptr handle. |
| static std::pair<Result, Compilation> createForDevice(const Model* model, |
| const ANeuralNetworksDevice* device) { |
| return createForDevices(model, {device}); |
| } |
| static std::pair<Result, Compilation> createForDevices( |
| const Model* model, const std::vector<const ANeuralNetworksDevice*>& devices) { |
| ANeuralNetworksCompilation* compilation = nullptr; |
| const Result result = static_cast<Result>(ANeuralNetworksCompilation_createForDevices( |
| model->getHandle(), devices.empty() ? nullptr : devices.data(), devices.size(), |
| &compilation)); |
| return {result, Compilation(compilation)}; |
| } |
| |
| Compilation(const Model* model) { |
| int result = ANeuralNetworksCompilation_create(model->getHandle(), &mCompilation); |
| if (result != 0) { |
| // TODO Handle the error |
| } |
| } |
| |
| Compilation() {} |
| |
| ~Compilation() { ANeuralNetworksCompilation_free(mCompilation); } |
| |
| // Disallow copy semantics to ensure the runtime object can only be freed |
| // once. Copy semantics could be enabled if some sort of reference counting |
| // or deep-copy system for runtime objects is added later. |
| Compilation(const Compilation&) = delete; |
| Compilation& operator=(const Compilation&) = delete; |
| |
| // Move semantics to remove access to the runtime object from the wrapper |
| // object that is being moved. This ensures the runtime object will be |
| // freed only once. |
| Compilation(Compilation&& other) { *this = std::move(other); } |
| Compilation& operator=(Compilation&& other) { |
| if (this != &other) { |
| ANeuralNetworksCompilation_free(mCompilation); |
| mCompilation = other.mCompilation; |
| other.mCompilation = nullptr; |
| } |
| return *this; |
| } |
| |
| Result setPreference(ExecutePreference preference) { |
| return static_cast<Result>(ANeuralNetworksCompilation_setPreference( |
| mCompilation, static_cast<int32_t>(preference))); |
| } |
| |
| Result setPriority(ExecutePriority priority) { |
| return static_cast<Result>(ANeuralNetworksCompilation_setPriority( |
| mCompilation, static_cast<int32_t>(priority))); |
| } |
| |
| Result setCaching(const std::string& cacheDir, const std::vector<uint8_t>& token) { |
| if (token.size() != ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN) { |
| return Result::BAD_DATA; |
| } |
| return static_cast<Result>(ANeuralNetworksCompilation_setCaching( |
| mCompilation, cacheDir.c_str(), token.data())); |
| } |
| |
| Result finish() { return static_cast<Result>(ANeuralNetworksCompilation_finish(mCompilation)); } |
| |
| Result getPreferredMemoryAlignmentForInput(uint32_t index, uint32_t* alignment) const { |
| if (__builtin_available(android __NNAPI_FL5_MIN_ANDROID_API__, *)) { |
| return static_cast<Result>( |
| NNAPI_CALL(ANeuralNetworksCompilation_getPreferredMemoryAlignmentForInput( |
| mCompilation, index, alignment))); |
| } else { |
| return Result::FEATURE_LEVEL_TOO_LOW; |
| } |
| }; |
| |
| Result getPreferredMemoryPaddingForInput(uint32_t index, uint32_t* padding) const { |
| if (__builtin_available(android __NNAPI_FL5_MIN_ANDROID_API__, *)) { |
| return static_cast<Result>( |
| NNAPI_CALL(ANeuralNetworksCompilation_getPreferredMemoryPaddingForInput( |
| mCompilation, index, padding))); |
| } else { |
| return Result::FEATURE_LEVEL_TOO_LOW; |
| } |
| }; |
| |
| Result getPreferredMemoryAlignmentForOutput(uint32_t index, uint32_t* alignment) const { |
| if (__builtin_available(android __NNAPI_FL5_MIN_ANDROID_API__, *)) { |
| return static_cast<Result>( |
| NNAPI_CALL(ANeuralNetworksCompilation_getPreferredMemoryAlignmentForOutput( |
| mCompilation, index, alignment))); |
| } else { |
| return Result::FEATURE_LEVEL_TOO_LOW; |
| } |
| }; |
| |
| Result getPreferredMemoryPaddingForOutput(uint32_t index, uint32_t* padding) const { |
| if (__builtin_available(android __NNAPI_FL5_MIN_ANDROID_API__, *)) { |
| return static_cast<Result>( |
| NNAPI_CALL(ANeuralNetworksCompilation_getPreferredMemoryPaddingForOutput( |
| mCompilation, index, padding))); |
| } else { |
| return Result::FEATURE_LEVEL_TOO_LOW; |
| } |
| }; |
| |
| ANeuralNetworksCompilation* getHandle() const { return mCompilation; } |
| |
| protected: |
| // Takes the ownership of ANeuralNetworksCompilation. |
| Compilation(ANeuralNetworksCompilation* compilation) : mCompilation(compilation) {} |
| |
| ANeuralNetworksCompilation* mCompilation = nullptr; |
| }; |
| |
| class Execution { |
| public: |
| Execution(const Compilation* compilation) : mCompilation(compilation->getHandle()) { |
| int result = ANeuralNetworksExecution_create(compilation->getHandle(), &mExecution); |
| if (result != 0) { |
| // TODO Handle the error |
| } |
| } |
| |
| ~Execution() { ANeuralNetworksExecution_free(mExecution); } |
| |
| // Disallow copy semantics to ensure the runtime object can only be freed |
| // once. Copy semantics could be enabled if some sort of reference counting |
| // or deep-copy system for runtime objects is added later. |
| Execution(const Execution&) = delete; |
| Execution& operator=(const Execution&) = delete; |
| |
| // Move semantics to remove access to the runtime object from the wrapper |
| // object that is being moved. This ensures the runtime object will be |
| // freed only once. |
| Execution(Execution&& other) { *this = std::move(other); } |
| Execution& operator=(Execution&& other) { |
| if (this != &other) { |
| ANeuralNetworksExecution_free(mExecution); |
| mCompilation = other.mCompilation; |
| other.mCompilation = nullptr; |
| mExecution = other.mExecution; |
| other.mExecution = nullptr; |
| } |
| return *this; |
| } |
| |
| Result setInput(uint32_t index, const void* buffer, size_t length, |
| const ANeuralNetworksOperandType* type = nullptr) { |
| return static_cast<Result>( |
| ANeuralNetworksExecution_setInput(mExecution, index, type, buffer, length)); |
| } |
| |
| template <typename T> |
| Result setInput(uint32_t index, const T* value, |
| const ANeuralNetworksOperandType* type = nullptr) { |
| static_assert(!std::is_pointer<T>(), "No operand may have a pointer as its value"); |
| return setInput(index, value, sizeof(T), type); |
| } |
| |
| Result setInputFromMemory(uint32_t index, const Memory* memory, uint32_t offset, |
| uint32_t length, const ANeuralNetworksOperandType* type = nullptr) { |
| return static_cast<Result>(ANeuralNetworksExecution_setInputFromMemory( |
| mExecution, index, type, memory->get(), offset, length)); |
| } |
| |
| Result setOutput(uint32_t index, void* buffer, size_t length, |
| const ANeuralNetworksOperandType* type = nullptr) { |
| return static_cast<Result>( |
| ANeuralNetworksExecution_setOutput(mExecution, index, type, buffer, length)); |
| } |
| |
| template <typename T> |
| Result setOutput(uint32_t index, T* value, const ANeuralNetworksOperandType* type = nullptr) { |
| static_assert(!std::is_pointer<T>(), "No operand may have a pointer as its value"); |
| return setOutput(index, value, sizeof(T), type); |
| } |
| |
| Result setOutputFromMemory(uint32_t index, const Memory* memory, uint32_t offset, |
| uint32_t length, const ANeuralNetworksOperandType* type = nullptr) { |
| return static_cast<Result>(ANeuralNetworksExecution_setOutputFromMemory( |
| mExecution, index, type, memory->get(), offset, length)); |
| } |
| |
| Result setLoopTimeout(uint64_t duration) { |
| return static_cast<Result>(ANeuralNetworksExecution_setLoopTimeout(mExecution, duration)); |
| } |
| |
| Result enableInputAndOutputPadding(bool enable) { |
| if (__builtin_available(android __NNAPI_FL5_MIN_ANDROID_API__, *)) { |
| return static_cast<Result>( |
| ANeuralNetworksExecution_enableInputAndOutputPadding(mExecution, enable)); |
| } else { |
| return Result::FEATURE_LEVEL_TOO_LOW; |
| } |
| } |
| |
| Result setReusable(bool reusable) { |
| if (__builtin_available(android __NNAPI_FL5_MIN_ANDROID_API__, *)) { |
| return static_cast<Result>( |
| NNAPI_CALL(ANeuralNetworksExecution_setReusable(mExecution, reusable))); |
| } else { |
| return Result::FEATURE_LEVEL_TOO_LOW; |
| } |
| } |
| |
| Result startCompute(Event* event) { |
| ANeuralNetworksEvent* ev = nullptr; |
| Result result = static_cast<Result>(ANeuralNetworksExecution_startCompute(mExecution, &ev)); |
| event->set(ev); |
| return result; |
| } |
| |
| Result startComputeWithDependencies(const std::vector<const Event*>& dependencies, |
| uint64_t duration, Event* event) { |
| std::vector<const ANeuralNetworksEvent*> deps(dependencies.size()); |
| std::transform(dependencies.begin(), dependencies.end(), deps.begin(), |
| [](const Event* e) { return e->getHandle(); }); |
| ANeuralNetworksEvent* ev = nullptr; |
| Result result = static_cast<Result>(ANeuralNetworksExecution_startComputeWithDependencies( |
| mExecution, deps.data(), deps.size(), duration, &ev)); |
| event->set(ev); |
| return result; |
| } |
| |
| // By default, compute() uses the synchronous API. Either an argument or |
| // setComputeMode() can be used to change the behavior of compute() to |
| // either: |
| // - use the asynchronous or fenced API and then wait for computation to complete |
| // or |
| // - use the burst API |
| // Returns the previous ComputeMode. |
| enum class ComputeMode { SYNC, ASYNC, BURST, FENCED }; |
| static ComputeMode setComputeMode(ComputeMode mode) { |
| ComputeMode oldComputeMode = mComputeMode; |
| mComputeMode = mode; |
| return oldComputeMode; |
| } |
| static ComputeMode getComputeMode() { return mComputeMode; } |
| |
| Result compute(ComputeMode computeMode = mComputeMode) { |
| switch (computeMode) { |
| case ComputeMode::SYNC: { |
| return static_cast<Result>(ANeuralNetworksExecution_compute(mExecution)); |
| } |
| case ComputeMode::ASYNC: { |
| ANeuralNetworksEvent* event = nullptr; |
| Result result = static_cast<Result>( |
| ANeuralNetworksExecution_startCompute(mExecution, &event)); |
| if (result != Result::NO_ERROR) { |
| return result; |
| } |
| // TODO how to manage the lifetime of events when multiple waiters is not |
| // clear. |
| result = static_cast<Result>(ANeuralNetworksEvent_wait(event)); |
| ANeuralNetworksEvent_free(event); |
| return result; |
| } |
| case ComputeMode::BURST: { |
| ANeuralNetworksBurst* burst = nullptr; |
| Result result = |
| static_cast<Result>(ANeuralNetworksBurst_create(mCompilation, &burst)); |
| if (result != Result::NO_ERROR) { |
| return result; |
| } |
| result = static_cast<Result>( |
| ANeuralNetworksExecution_burstCompute(mExecution, burst)); |
| ANeuralNetworksBurst_free(burst); |
| return result; |
| } |
| case ComputeMode::FENCED: { |
| ANeuralNetworksEvent* event = nullptr; |
| Result result = |
| static_cast<Result>(ANeuralNetworksExecution_startComputeWithDependencies( |
| mExecution, nullptr, 0, 0, &event)); |
| if (result != Result::NO_ERROR) { |
| return result; |
| } |
| result = static_cast<Result>(ANeuralNetworksEvent_wait(event)); |
| ANeuralNetworksEvent_free(event); |
| return result; |
| } |
| } |
| return Result::BAD_DATA; |
| } |
| |
| Result getOutputOperandDimensions(uint32_t index, std::vector<uint32_t>* dimensions) { |
| uint32_t rank = 0; |
| Result result = static_cast<Result>( |
| ANeuralNetworksExecution_getOutputOperandRank(mExecution, index, &rank)); |
| dimensions->resize(rank); |
| if ((result != Result::NO_ERROR && result != Result::OUTPUT_INSUFFICIENT_SIZE) || |
| rank == 0) { |
| return result; |
| } |
| result = static_cast<Result>(ANeuralNetworksExecution_getOutputOperandDimensions( |
| mExecution, index, dimensions->data())); |
| return result; |
| } |
| |
| ANeuralNetworksExecution* getHandle() { return mExecution; }; |
| |
| private: |
| ANeuralNetworksCompilation* mCompilation = nullptr; |
| ANeuralNetworksExecution* mExecution = nullptr; |
| |
| // Initialized to ComputeMode::SYNC in TestNeuralNetworksWrapper.cpp. |
| static ComputeMode mComputeMode; |
| }; |
| |
| } // namespace test_wrapper |
| } // namespace nn |
| } // namespace android |
| |
| #endif // ANDROID_PACKAGES_MODULES_NEURALNETWORKS_RUNTIME_TEST_TEST_NEURAL_NETWORKS_WRAPPER_H |